```
" UNM Statistical Literacy:
    Design and Rationale
```

Milo Schield
Statistical Literacy Coordinator: Univ. of New Mexico Fellow: American Statistical Association Elected Member: International Statistical Institute US Rep: International Statistical Literacy Project President: National Numeracy Network

February 18, 2022
www.StatLit.org/pdf/2022-Schield-UTEP-Slides.pdf

${ }^{\text {v1 }} \quad$ Today's student need to study Statistics

Disparities in

- Education, suspensions and graduation
- Policing, crime, sentencing and prison
- Wages, income, assets, loans and wealth
- Health, health care, homicides and deaths

Disparities by
gender, race, ethnicity, religion, politics, age, etc.
All of these rely on statistics: social statistics.

V1 2022 Scried UTEP S smposium (stides) $\quad 4$

Math 1300: Statistical Literacy

Less than 30\% overlap with traditional statistics

Math 1300: Statistical Literacy

TWO KINDS OF INTRODUCTORY STATISTICS COURSES

Statistical Literacy. More confounding than statistical inference.	Quantitative Methods. More statistical inference than confounding.
UNM Math $\mathbf{1 3 0 0}$	Utts, Bennett, Stat 101

By what standard is the content selected?

Math 1300: Statistical Literacy

Statistical literacy is designed for the consumers of statistics: students, citizens, and decision makers.

- Students in non-quantitative majors.

But this statement of audience is still ambiguous.
Who decides what the content will be?

- Statisticians: GAISE 2016 update?
- The statistics in research articles?
- The statistics in the everyday media?

V1 ${ }^{\text {vististics can Be Influenced }}$
Q. Best advice when dealing with statistics?
A. "Take CARE". Statistics can be influenced.
All influences are grouped into four categories:
C: Confounding
A: Assembly (how things are defined, counted, etc.)
R: Randomness
E: Error (including bias)

Math 1300: Statistical Literacy Statistics in the everyday Media

This is what these students "NEED".
Statistical content analysis:

- hundreds of news stories containing statistics
- 46,000 articles in the Harvard Business Review
- 4.5 billion words in UK Cobuild corpus
- 1 billion words BYU corpus (COCA)

Statistics are
Socially Cornstructed
voel Best, author of "Lies, Damned Lies and Statistics" identified this as fact as the most important, the most fundamental aspect of all reality-based statistics. He didn't mean all of reality was a mental construct. He meant that statistics, just like words, are created by people: people with motives, values and goals. Each statistic embodies a particular view of reality.

V1 2022 Screea UTEPS Smposium (estides) 12
 Admonition: "Talke CARE"

Students like "CARE". It gives them a structure.
Without a unifying structure, statistical literacy is just a collection of disparate influences.
Everything they learn about influences fits.
When asked to rank what they considered most valuable, they chose "CARE".
If they remember just one thing from the course, it should be "Take CARE".

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

202 Schied UTEP Symposium (sfereses) 16
 Seven Student Failures: Failure to recognize that...

1. Association is not causation (eg., disparity...)
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Statistics can be Confounded Vaccinated: More Lilkely to Die

UK 260,000 cases May-Sept 2021
In the UK, vaccinated cases are 2.4 times as likely to die from Covid as [are] the unvaccinated cases.

National Health Service. 268,169 cases.
A crude comparison (mixed fruit comparison).

What could confound this association?
Age!

Covid Death Rates per Case			Crude All	Fraction of Cases			Adjusted
	<50	50+		<50	50+	All	Standard
Un-vac	0.03\%	5.96\%	0.17\%	0.977	0.023	1.000	0.71\%
Vaccinated	0.02\%	1.68\%	0.41\%	0.767	0.233	1.000	0.21\%
0.17\% $=0.977^{*} 0.03 \%+0.023 * 5.96 \%$				0.885	0.115	1.000	
0.41\% $=0.767^{*} 0.02 \%+0.233 * 1.68 \%$				0.21\%=.885*.02\%+.115*1.68\%			
		Ratio	2.4	Ratio	10.2	Ratio	3.4

After standardizing, unvaccinated are more likely to die than [are] the vaccinated.

v1 Failure \#3 \qquad Black-White Income Gap 22IK Income Disparity					
Family Income				Distribution	
Total	Race	Single	Married	Single	Married
\$55,000	Whites	\$26,700	\$60,600	18\%	82\%
\$33,000	Blacks	\$14,000	\$53,900	52\%	48\%

Failure \#3
 Students Need Practice with Confounding

Understand how a crude association can be a:

- Mixed fruit comparison
- An apples and oranges comparison.

Students need to really understand what it means:

- To take something into account
- To control for something.
- To standardize an association: To give both groups the same mix!

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

v1 Failure \#4
 29
 Randomness and Big Data

The bigger the data, the more likely a rare event. The Law of Truly Large Numbers.

Suppose an unlikely event occurs one chance in N .
Given N tries,

- one such event is expected, and
- at least one such event is more likely than not.

Schield (2009).

The bigger the data, the more likely an unlikely outcome

Fair coin: find longest run of heads in a row 10 Longest run! One chance in 1,024

V1 ${ }^{2022}$ Sccielat UTEP Smposesum (ssives)
 Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Failure \#5 2022 Schied utep Symposium (sfide 32 Distinguish Numerator and Denominator

1. The percentage of smokers who are men.
2. The percentage of men who are smokers.
3. The percentage of men among smokers.

Confusion of the inverse

1. Guys are more likely to smoke than gals.
2. Guys are more likely among smokers than gals.

${ }^{\text {v1 }}$ Failure \#5 ${ }^{\text {Distinguish Percent and }}{ }^{33}$ Percentage Grammar

If " 20% of guys are smokers", then 20% is the percentage of guys who smoke.

So if 20% of guys who run are smokers, then 20% is
the percentage of guys who run who are smokers.
This last phrase is ambiguous!
What is the status of run?

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

2. Epidemiological statistics are common! US Annual Deaths Attributable To:	
Smoking: 467,000	Blood pressure: 395,000
Overweight: 216,000	Inactivity: 191,000
Blood sugar: 190,000	LDL cholesterol: 113,000
Dietary salt: 102,000	Low omega-3 : 84,000

High dietary trans fatty acids: 82,000
Alcohol use: 64,000 (90,000 less 26,000 averted)
Low intake of fruits and vegetables: 58,000
Low poly-unsaturated fatty acids: 15,000
www.emaxhealth.com/2/24/30740/
smoking-high-blood-pressure-obesity-top-preventable-death-causes.html

Distinguish Counted Counts from Modeled Counts

Counted deaths are coroner certified.
Some causal deaths are coroner certified: alcohol.
Modeled deaths are statistical deaths.
Smoking, second-hand smoke, obesity, etc.
These counts are speculative (spotty) statistics.

Schield (2009): Confound those Speculative Statistics
www.StatLit.org/pdf/2009SchieldASA.pdf
Schield (2011): Epidemiological Models and Spotty Statistics
www.StatLit.org/pdf/2011SchieldISI.pdf

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

V1
 Result:
 Students should:

Know that statistics can be influenced.

Understand "control for" and "take into account."

Know that standardizing converts a mixed fruit comparison into an apples and apples comparison.

Recognize the possibility of a Simpson's paradox.

V1 2022 Scrield UTEP Smposium (stides) $\quad 44$

Math 1300 Highlights

Asserts that Association is Not Causation Asserts that Disparity is Not Discrimination

Focus on The Story Behind the Statistics
Shows how a crude association (mixed fruit comparison) may conceal the real story!

Shows students how to control for confounders
Shows students these things without computers

V1 2022 Scried UTEP Smposum (Ssines) 45
 Anonymous Student Survey

Before finals, students are asked three questions.

1. Did this course improve your critical thinking?
2. Would you recommend this course to a friend?
3. Should all students be required to take this course?

When I teach traditional statistics I get 'Yes' (Agree or Strongly agree) from 15% to 25% of the students.

When I teach Statistical Literacy to art, music and management majors, I get 'Yes' from at least 50\%.

Anonymous Student Comments (Fall 2021)

I like the content and critical thinking aspect of the class. As someone who had to drop the regular stats class, I was very happy to have this class as an option.

This course is an answer to my prayers, I am a music major and horrible at math so fulfilling my math requirement has been hard. This is the first math class I actually liked. ... the material is about things I can apply to everyday life. ...I would recommend this class for anyone.

V1 2022 Scuield UTEP S.mposium (Stutes) 47
 Study Confounder-Based Statistical Literacy

Statistical Literacy: What Students Like about the Course www.statlit.org/pdf/2021-Fall-UNM-MATH1300-S1.pdf

Statistical Literacy: The Diabolical Denominator www.StatLit.org/pdf/2021-Schield-MathFest.pdf

Statistical Literacy: Teaching Confounding www.StatLit.org/pdf/2021-Schield-USCOTS.pdf

University of New Mexico Offers Math 1300 www.StatLit.org/pdf/2021-Schield-ASA.pdf
Schield's papers: www.StatLit.org/Schield-Pubs.htm

UNM Statistical Literacy: Design and Rationale

Milo Schield

Statistical Literacy Coordinator: Univ. of New Mexico
Fellow: American Statistical Association
Elected Member: International Statistical Institute US Rep: International Statistical Literacy Project

President: National Numeracy Network

February 18, 2022
www.StatLit.org/pdf/2022-Schield-UTEP-Slides.pdf

Today's student need to study Statistics

Disparities in

- Education, suspensions and graduation
- Policing, crime, sentencing and prison
- Wages, income, assets, loans and wealth
- Health, health care, homicides and deaths

Disparities by
gender, race, ethnicity, religion, politics, age, etc.
All of these rely on statistics: social statistics.

University of New Mexico is offering a new course!

Taught 4 sections in fall 2021

Statistical Literacy

MATH 1300 (3)
Participants will study the social statistics encountered by consumers. Investigate the story behind the statistics. Study the influences on social statistics. Study the techniques used to control these influences. Strong focus on confounding.

Meets New Mexico General Education Curriculum Area 2: Mathematics and Statistics.

Math 1300: Statistical Literacy

Less than 30\% overlap with traditional statistics

Math 1300: Statistical Literacy

STATISTICS STUDIES VARIATION

Two kinds of variation

SYSTEMATIC

Confounding (control for: selection, ratios, regression)
Assembly (define, present)
Error (Bias)
Systematic Influences

RANDOM

Probability
Sampling error
Confidence intervals
Test of Hypothesis
Statistical Inference

Math 1300: Statistical Literacy

TWO KINDS OF INTRODUCTORY STATISTICS COURSES

Statistical Literacy.	Quantitative Methods.
More confounding	
More statistical inference	
than statistical inference.	than confounding.
UNM Math 1300	Utts, Bennett, Stat 101

By what standard is the content selected?

Math 1300: Statistical Literacy

Statistical literacy is designed for the consumers of statistics: students, citizens, and decision makers.

- Students in non-quantitative majors.

But this statement of audience is still ambiguous. Who decides what the content will be?

- Statisticians: GAISE 2016 update?
- The statistics in research articles?
- The statistics in the everyday media?

Math 1300: Statistical Literacy Statistics in the everyday Media

This is what these students "NEED".
Statistical content analysis:

- hundreds of news stories containing statistics
- 46,000 articles in the Harvard Business Review
- 4.5 billion words in UK Cobuild corpus
- 1 billion words BYU corpus (COCA)

Statistical Literacy: Social Statistics

Statistics are different from numbers
Statistics are numbers in context (in reality)
Statistics can be influenced by reality:

- In arithmetic, 1 plus 1 is always 2 .
- In reality math:

1 bunny plus 1 bunny can give three bunnies
1 ice-cube plus 1 ice-cube can give zero ice-cubes

Statistics are Socially Constructed

Joel Best, author of "Lies, Damned Lies and Statistics" identified this as fact as the most important, the most fundamental aspect of all reality-based statistics.
He didn't mean all of reality was a mental construct.
He meant that statistics, just like words, are created by people: people with motives, values and goals.
Each statistic embodies a particular view of reality.

Statistics can Be Influenced

Q. Best advice when dealing with statistics?
A. "Take CARE". Statistics can be influenced.

All influences are grouped into four categories:
C: Confounding
A: Assembly (how things are defined, counted, etc.)
R: Randomness
E: Error (including bias)

Admonition: "Take CARE"

Students like "CARE". It gives them a structure. Without a unifying structure, statistical literacy is just a collection of disparate influences.
Everything they learn about influences fits.
When asked to rank what they considered most valuable, they chose "CARE".

If they remember just one thing from the course, it should be "Take CARE".

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Association is Not Causation

Semantics: Association is not [necessarily] Causation

A: Association	B: Between
Asserts an association;	Asserts an association
Says "what"	but suggest causation
associated/association	increases, raises, ups; cut
correlation	"As $\mathrm{x} \uparrow, \mathrm{y} \downarrow$ "; "more x , less y "
Two-group comparisons:	before/after; linked, factor
"Women live longer than men"	leads to; causal factor
"Men more likely to drink beer"	due to, because of

Based on common usage by many today, but not "etched in stone" for all.

C: Causation
Asserts causation;
Asserts "how" *
cause, create, produce
effect, result, consequence
Sufficient: prevent, stop
"If X, then Y will happen"
Contra-factual

* Other words OK in context. Schield VOK

Disparity is Not Discrimination

Semantics: Differences or Disparities are not [necessarily] Discrimination

A: Association
Math Differences:
Count/Rate/Amount
different, unequal
Rank: first, second, last
Superlatives: highest/lowest
Comparatives: more, higher,
times as much, percent more

B: Between (moral)
Descriptive Differences
with a Moral Connotation
unequal/inequality
disproportionate
discriminate: discern difference
disparity / disparate impact
over/under represented

C: Causation (moral)
Immoral Differences:
Evaluative or Judgemental
inequity/inequitable
unfair/unjust/undeserved
discriminate: with prejudice
discrimination*
racism/sexism

[^0]
Seven Student Failures: Failure to recognize that...

1. Association is not causation (eg., disparity...)
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

v1 Failure \#2
 Statistics can be Manipulated Assembly/Assumptions

The number of children killed by gunfire has doubled each year since 1950;

The number of children killed by gunfire each year has doubled since 1950
30% of middle school students are bullied.
Define bullying. Increase or decrease the percentage

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Statistics can be Confounded Downs Syndrome

Down Syndrome: Cases per 10,000 Births By Child's Birth Order

Schield (2017): www.StatLit.org/pdf/2017-Schield-Downs-Syndrome-Slides.pdf

Statistics can be Confounded Down Syndrome

Down Syndrome: Cases per 10,000 Births By Mom's Age

Schield (2017): www.StatLit.org/pdf/2017-Schield-Downs-Syndrome-Slides.pdf

Statistics can be Confounded Vaccinated: More Likely to Die

In the UK, vaccinated cases are 2.4 times as likely to die from Covid as [are] the unvaccinated cases.

National Health Service. 268,169 cases.
A crude comparison (mixed fruit comparison).

What could confound this association?
Age!

Statistics can be Confounded Vaccinated: More Likely to Die

UK 260,000 cases May-Sept 2021

Covid Death Rates per Case			Crude All	Fraction of Cases			Adjusted Standard
	<50	50+		<50	50+	All	
Un-vac	0.03\%	5.96\%	0.17\%	0.977	0.023	1.000	0.71\%
Vaccinated	0.02\%	1.68\%	0.41\%	0.767	0.233	1.000	0.21\%
0.17\% $=0.977 * 0.03 \%+0.023 * 5.96 \%$				0.885	0.115	1.000	
0.41\% $=0.767 * 0.02 \%+0.233 * 1.68 \%$				0.21\%=.885*.02\%+.115*1.68\%			
		Ratio	2.4	Ratio	10.2	Ratio	3.4

After standardizing, unvaccinated are more likely to die than [are] the vaccinated.

Family Income			
Total	Race	Single	Married
$\$ 55,000$	Whites	$\$ 26,700$	$\$ 60,600$
$\$ 33,000$	Blacks	$\$ 14,000$	$\$ 53,900$

Distribution	
Single	Married
18%	82%
52%	48%

Standardization Graphically: 21 In Income Disparity

Standardization Graphically:

 7II Income Disparity

Understand how a crude association can be a:

- Mixed fruit comparison
- An apples and oranges comparison.

Students need to really understand what it means:

- To take something into account
- To control for something.
- To standardize an association: To give both groups the same mix!

Seven Student Failures: Failure to recognize that.-.

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Randomness and Big Data

The bigger the data, the more likely a rare event.
The Law of Truly Large Numbers.

Suppose an unlikely event occurs one chance in N.
Given N tries,

- one such event is expected, and
- at least one such event is more likely than not. Schield (2009).

The bigger the data, the more lilkely an unlilzely outcome

Fair coin: find longest run of heads in a row 10 Longest run! One chance in $\mathbf{1 , 0 2 4}$

$$
300101010110111000001010110100100001100
$$

1010111111111101011010110011011010010110
500101010101011001010011010101111101101
311001100001101001101011001001011101001

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Distinguish Numerator and

 Denominator1. The percentage of smokers who are men.
2. The percentage of men who are smokers.
3. The percentage of men among smokers.

Confusion of the inverse

1. Guys are more likely to smoke than gals.
2. Guys are more likely among smokers than gals.

Distinguish Percent and Percentage Grammar

If " 20% of guys are smokers",
then 20% is the percentage of guys who smoke.

So if 20% of guys who run are smokers, then 20% is the percentage of guys who run who are smokers.
This last phrase is ambiguous!
What is the status of run?

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

V1
 Failure \#6

Distinguish Counted Counts

 from Modeled Counts

Responsible for ...

Study blames diesel for deaths

By Jon Brodkin / Daily News Staff
Wednesday, February 23, 2005

Diesel pollution is responsible for more deaths than drunk drivers and homicides, according to a new study that estimates how many premature deaths, asthma attacks and heart attacks are caused by diesel pollution in every U.S. county.

Nationwide, diesel pollution causes 21,000 premature deaths each year, including 475 in Massachusetts and 81 in Middlesex County, robbing those who die of an average of 14 years of their lives,
2. Epidemiological statistics are common! US Annual Deaths Attributable To:

Smoking: 467,000
Overweight: 216,000
Blood sugar: 190,000
Dietary salt: 102,000

High dietary trans fatty acids: 82,000
Alcohol use: 64,000 (90,000 less 26,000 averted)
Low intake of fruits and vegetables: 58,000
Low poly-unsaturated fatty acids: 15,000
www.emaxhealth.com/2/24/30740/
smoking-high-blood-pressure-obesity-top-preventable-death-causes.html

Distinguish Counted Counts

 from Modeled CountsCounted deaths are coroner certified.
Some causal deaths are coroner certified: alcohol.
Modeled deaths are statistical deaths.
Smoking, second-hand smoke, obesity, etc.
These counts are speculative (spotty) statistics.

Schield (2009): Confound those Speculative Statistics www.StatLit.org/pdf/2009SchieldASA.pdf
Schield (2011): Epidemiological Models and Spotty Statistics www.StatLit.org/pdf/2011SchieldISI.pdf

Consider these titles of news stories:

- 45,000 deaths attributable to uninsurance
- 45,000 deaths associated with lack of insurance
- Lack of insurance linked to 45,000 deaths
- 45,000 die ... because of lack of health insurance
- Lack of Health Insurance Kills 45,000 a Year
- Lack of Health Insurance cause 44789 deaths
- Lack of insurance to blame for almost 45,000 deaths

Source: www.StatLit.org/pdf/2010SchieldICOTS.pdf

Seven Student Failures: Failure to recognize that...

1. Association is not causation
2. Statistics can be manipulated
3. Statistics can be confounded: Simpson's paradox
4. Bigger data, the more likely an unlikely statistic
5. Ratio statistics are ordered: confusion of the inverse
6. Spotty statistics are modeled
7. Statistical significance can be influenced

Statistical significance:

 Influenced by Confounding

Statistical Insignificance: Influenced by Confounding

Result: Students should:

Know that statistics can be influenced.

Understand "control for" and "take into account."

Know that standardizing converts a mixed fruit comparison into an apples and apples comparison.

Recognize the possibility of a Simpson's paradox.

Math 1300 Highlights

Asserts that Association is Not Causation
Asserts that Disparity is Not Discrimination
Focus on The Story Behind the Statistics
Shows how a crude association (mixed fruit comparison) may conceal the real story!

Shows students how to control for confounders
Shows students these things without computers

Anonymous Student Survey

Before finals, students are asked three questions.

1. Did this course improve your critical thinking?
2. Would you recommend this course to a friend?
3. Should all students be required to take this course?

When I teach traditional statistics I get 'Yes' (Agree or Strongly agree) from 15% to 25% of the students.

When I teach Statistical Literacy to art, music and management majors, I get 'Yes' from at least 50%.

Anonymous Student Comments (Fall 2021)

I like the content and critical thinking aspect of the class. As someone who had to drop the regular stats class, I was very happy to have this class as an option.

This course is an answer to my prayers, I am a music major and horrible at math so fulfilling my math requirement has been hard. This is the first math class I actually liked. ... the material is about things I can apply to everyday life. ...I would recommend this class for anyone.

Study Confounder-Based Statistical Literacy

Statistical Literacy: What Students Like about the Course www.statlit.org/pdf/2021-Fall-UNM-MATH1300-S1.pdf

Statistical Literacy: The Diabolical Denominator www.StatLit.org/pdf/2021-Schield-MathFest.pdf

Statistical Literacy: Teaching Confounding www.StatLit.org/pdf/2021-Schield-USCOTS.pdf

University of New Mexico Offers Math 1300 www.StatLit.org/pdf/2021-Schield-ASA.pdf

Schield's papers: www.StatLit.org/Schield-Pubs.htm

[^0]: * Discrimination: direct/intended (racist/sexist) vs indirect/unintended; individual vs social (systemic or structural) Based on common usage by many today, but not "etched in stone" for all.

