

STATISTICAL LITERACY 2021B

Seeing the Story Behind the Statistics

Statistical Literacy 2021B:

Seeing the Story behind the Statistics

Copyright © 2021 December

All Rights Reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means except for the inclusion of brief quotations in reviews without written permission from the author.

Eighth Edition
Printed in the U.S. by Instant Publisher
ISBN: 978-1-61422-671-0

File name: 2021B-SL4DM-V1F.docx Size: 172,280 kb Save: 12/20/2021
499 pages, 7901 paragraphs, 15,275 lines, 143,172 words, 732,405 characters.
228 figures, 129 tables, 34 stories, 11 equations,
210 glossary terms, 420 index entries,

TABLE OF CONTENTS

Chapter 1. The story behind the statistics 7
Chapter 2. Comparisons and CARE Solutions 59
Chapter 3. Understanding measurements 114
Chapter 4. Describing ratios: Percent and Percentage 160
Chapter 5. Describing Ratios: Rate, Chance and Ratio 196
Chapter 6. Comparing Ratios using Named-Ratios or Likely 239
Chapter 7. Interpreting Confusing Ratios 271
Chapter 8. Randomness 317
Key Word List by Chapter 342
Table of Figures 344
Table of Tables 350
Table of Stories 353
Table of Equations 354
Glossary 355
Index 369
Review of Named Ratios 375

Typography: Bold indicates a term that is being defined. Any word or phrase in bold should be found in the Glossary. Italics indicate an important concept, point or claim. In part-whole ratios, underscoring indicates a part while small caps indicates a whole.

DEDICATION

To ${ }^{1}$

Florence Nightingale, Jerome Cornfield,
Dennis Haack, Victor Cohn
and Joel Best
GOAL

To help decision makers make better decisions using statistics as evidence

[^0]
Preface

Table of Contents:

Preface

Students: See the story behind the statistics Secondary Goal
Teachers: Statistical literacy solves a problem $\quad 2$
Teachers: Is this Statistics? 4
Audience for this book 4

Design and Use of this book
Statistical Literacy and GAISE
Ways to use this textbook
5
Recommended Supplements
5
Statistical Literacy: Descriptions and Comments 6

Preface

Students: See the story behind the statistics

You may be very interested in social issues such as social justice or individual rights. Most of these involve statistics: social statistics. Figuring out whether the statistics provide strong evidence is not easy. This course is dedicated to helping you read, interpret and evaluate social statistics. Social statistics are very different from numbers. Usually there is a story behind the statistics. That story is important; it deserves to be told, studied and understood.
Social statistics may involve sensitive subjects. If you are an adult and some social statistics trigger strong feelings, then your job is to deal with your feelings. If you are having difficulties, talk to your instructor or counselor. Ultimately, you are responsible for controlling your mind. If you can't, then you are vulnerable to being controlled by others who may not have your best interests at heart.
Not all statistics are your friends. Some statistics are false, while others are ambiguous, ill-defined, misleading or spurious. As Mark Twain said, "There are three kinds of lies: lies, damned lies and statistics."

As a reader you have three choices: (1) be naïve: treat every statistic as a fact, (2) be a cynic: ignore every statistic since it might be an error or an opportunistic misrepresentation, or (3) be a critical thinker: learn how to distinguish good and bad statistics. You may get overwhelmed or feel trapped when you see a statistic. If you accept the statistic as strong evidence, you may be fooled. If you reject a statistic as evidence, you may be wrong and make a bad choice.

The primary goal of statistical literacy is to help you evaluate the credibility of a statistic (not just the source) - to go beyond reading statistics in the everyday news to reading 'between the lines' - to see the story behind the statistics.
It takes training and practice to read people or to see the theme of a movie or the direction of play in a sport. It takes training and practice to untangle an argument. It takes more training and practice to untangle an argument that uses statistics as evidence. A goal of this book is to give you that training and practice.
Statistical literacy is the ability to read and interpret statistics in the everyday media. Statistical literacy is critical thinking about statistics as evidence in arguments.
Statistical literacy is closer to critical thinking than to mathematics. Mathematics is deduction: true or false, right or wrong. Critical thinking involves induction: shades of grey, strength of evidence supporting a conclusion. Think of statistical literacy as quantitative rhetoric ${ }^{2}$.
Journalists are also helping to make statistical literacy a necessity for citizens in a democracy. While statisticians thrive on numbers; journalists thrive on words.
While statisticians try to avoid controversy and ambiguity; journalists live on controversy and ambiguity.
Statistical literacy-the ability to read and interpret social statistics-is a requirement to understanding issues and making intelligent decisions in modern society where anyone can find a statistic to support their view.

Statistical Literacy is a new discipline. Welcome aboard.

Secondary Goal

Communicating is the secondary goal of this book. This involves two activities. First to help people communicate their evaluation of statistical claims as presented in graphs, tables and statements. Second, to help people present statistical claims in their papers at school and at work, and in their presentations.

Communicating involves writing and speaking, both of which are more demanding than reading - especially for those with weak English skills. This text has a strong focus on the English grammar required to read and communicate arithmetic comparisons, ratios (using percentage, rate and change grammar) and comparisons of ratios (using likely grammar).

Teachers: Statistical literacy solves a problem

Traditional introductory statistics has a problem. Most students see less value in statistics after that course that they did before taking the course.

[^1] V1F

The traditional inference course is designed for Producers: those who major or minor in statistics and those who may conduct or read statistical studies.

Most college graduates are Consumers. They will never conduct or read the results of a study. They will see statistics in the everyday media that they need to read and interpret. Many will make de7cisions based on statistics.

Students see value in statistical literacy. Most agree that statistical literacy should be required for graduation by all students.

Statistical literacy is different:

- Different audience: Statistical literacy is for those who need to read and interpret the statistics they encounter in the everyday media.
- Different content: Traditional statistics focuses on randomness; statistical literacy focuses more on confounding.
- Different focus: The world has changed. In the past, small surveys and clinical trials were more common. Today, large surveys, big data, quasiexperiments, and observational studies are much more common.
- Different approach: Statistical inference is deductive: if the premises are true, then the conclusion must be true. In random sampling, 95% of all the 95% confidence intervals must include the population parameter. Statistical literacy is inductive: how strong is the evidence in supporting a disputable claim or conclusion?
- Different thinking: Traditional statistics involves mathematical thinking: Statistical literacy involves hypothetical thinking. What should have been controlled for? How could things have been defined, counted and measured differently? What was omitted or overlooked? What difference would these differences make?
- Different mission: The mission of statistical literacy is to improve critical thinking about statistics as evidence in arguments. With the advent of big data, statistics are everywhere. Most social arguments involve social statistics as evidence. Students need to read and evaluate these statistics.

Students see that studying statistical literacy helps them deal with today's big issues. Statistical literacy helps them understand and evaluate the statistics presented in statements, tables and graphs. Students learn how to describe and compare these statistics using ordinary English.

As one college senior said, "Statistical literacy is the hardest course I've taken, but I think it will be the most valuable."

If you teach the traditional introductory statistics course, but want more of your students to see value in studying statistics, give statistical literacy a try.

Teachers: Is this Statistics?

How can statistical literacy be statistics if statistical literacy has less than a 30\% overlap with the traditional statistical-inference course?
Statistics studies variation. Variation is classified as random or systematic. Traditionally, the first statistics course focuses on random; the second focuses on systematic. The problem is that most students never take the second.

Statistical literacy studies variation - systematic and random - with a stronger emphasis on systematic. It includes topics from both the first and second statistics courses, and from epidemiology.

Audience for this book

This book is designed for consumers and decision makers. Decision makers include those who access, assemble, prepare and disseminate the statistics.
Decision makers make decisions involving large structured groups; consumers make decisions involving themselves or small informal groups. At college, decision makers are mainly those in non-science quantitative majors (the professions and the social sciences) or in political science, communications or journalism. Those in non-quantitative majors are typically consumers.

Design and Use of this book

By limiting the topics, this book allows instructors free time to experiment and do what they want: analyze news stories, investigate journal articles or run a project. Learning to think critically about statistics takes time and lots of practice. This book allows instructors the time to help students reach that goal.

This book is suitable for two-year and four-year colleges and in schools as an alternative to AP statistics. It has been used in an on-line class. This text can be used in a bridging course for those who will take statistical inference.
This book can be used as a companion text or as a text for a full course. A Moodle test-bank is available on Classroom Revolution.

Statistical Literacy and GAISE

This textbook is compliant with the first three recommendations of the ASA GAISE 2005 College Report: introductory statistics courses should "strive to (1) emphasize statistical literacy and develop statistical thinking, (2) use real data and (3) stress conceptual understanding rather than mere knowledge of procedures. This report suggested assessing statistical literacy by students "interpreting or critiquing articles in the news and graphs in media." This textbook is compliant with the GAISE 2016 recommendation for more focus on multivariate thinking and confounding. ${ }^{3}$

[^2] V1F

Ways to use this textbook

This textbook has less than a 30% overlap with the topics in a traditional statistical inference course. As such it provides a unique alternative to traditional statistics.
As a separate course, start by using just the first three chapters. They have the main ideas. This allows plenty of time to focus on reading news stories. Plan A (Inference emphasis): add the last two chapters. Plan B (confounder emphasis): Cover Ch 1-4 and 7; skip 5, 6 and 8. Add skipped chapters later.
In a traditional statistics course, use the last three weeks to introduce confounding in chapters three and seven and show how controlling for confounding can influence statistical significance in observational studies as shown in chapter eight.

For those who are averse to teaching English grammar and strength of evidence, focus on chapters three, seven and eight where problems have right-wrong answers.
Here are some of the unique topics in this textbook:
Ch 1: Statistics are Numbers in context. Take CARE: four kinds of influence.
Ch 2: Comparison: Arithmetic and Grammar (includes 'times less') [ESL] Study designs including quasi-experiments (along with letter grades) Randomness: Law of Very Large Numbers
Ch 3: Standardization of measures (algebraic and graphical) Cornfield's conditions for nullifying or reversing an association

Ch 4: Describing part-whole ratios using percent and percentage grammar [ESL] Reading 100% tables, half tables and two-way half tables.
Ch 5: Describing part-whole ratios using rate and chance grammar [ESL]
Ch 6: Comparing part-whole ratios using percentage and likely grammar [ESL]
Ch 7: Diabolical denominators. Interpreting part-whole ratios: medical tests. Standardization of percentages. Cornfield conditions.

Ch 8: Statistical significance influenced by confounding, assembly and bias. Sampling designs (along with letter grades)

Recommended Supplements

- 2020: Calling Bullshit: The Art of Skepticism ... by Bergstrom and West - 2019: Critical Statistics by Robert de Vries
- 2019: Guided Worksheets for Thinking Quantitatively by Eric Gaze
- 2015: Thinking Quantitatively: Communicating with Numbers, Eric Gaze
- 2012: Just Plain Data Analysis by Gary Klass
- 2010: Case Studies for Quantitative Reasoning by Bernie Madison, et al.

Statistical Literacy: Descriptions and Comments

"What is statistical literacy? What every educated person should know." David Moore, past-President of the American Statistical Association.
"Statistical literacy goes beyond numeracy by focusing on reading and communicating those topics studied in numeracy." ${ }^{5}$ Peter Holmes, Royal Statistical Society: Centre for Statistical Education.
"I see statistical literacy as standing in relation to traditional statistics as quantitative literacy is related to mathematics: they serve different purposes, but in each case the former is typically more useful than the latter for citizens and decision-makers." ${ }^{5}$ Lynn Steen, past-President of the MAA.
"There are few tasks in education today as urgent as improving the quality of statistical literacy. It is not necessary that every student learn the techniques of a professional statistician, but it is important that every student know enough to become an intelligent and critical consumer of statistical information." ${ }^{5}$ Dr. David Kelley, author of The Art of Reasoning.
"Many universities now have statistical or numerical literacy courses in addition to the traditional introductory statistics course. One lecture explaining the difference between an observational study and a randomized experiment, and the role of confounding variables in the interpretation of observational studies would do more to prepare students for reading the news than a dozen lectures on statistical inference procedures." Jessica Utts (2003)
"From my perspective, this teaching of causal inference is the most interesting topic today in statistical education, certainly so at the undergraduate level" ${ }^{5}$ Dr. Donald Rubin, Professor of Statistics, Harvard University.
"Misuse of the language of statistics is statistical doublespeak." Dennis Haack, author of Statistical Literacy: A Guide to Interpretation.
"Widespread statistical illiteracy among the gifted is cause for immediate concern..." Charles Murray, Real Education, p. 118.

I hope that...statistical literacy will...rise to the top of your advocacy list. Ruth Carver, 2012 ATOMPAV Presidential Address ${ }^{6}$
"Statistical literacy should be part of every citizen's tool kit" Nicholas Kristof"
Statistical literacy has risen to the top of my advocacy list, right alongside numeracy, and perhaps even ahead of "algebra for all." Michael Shaugnessy ${ }^{8}$, PastPresident of the NCTM. USCOTS 2015 Lifetime Achievement award.

[^3]Chapter 1. The story behind the statistics
TABLE OF CONTENTS
Learning Outcomes 7
Introduction 8
Statistics are Numbers in Context 10
Statistics in Arguments 12
What kinds of things influence statistics? 14
Summary 15
Critical Thinking Issues 16
Association 16
Causation 17
ABC Keywords for Association vs Causation 19
Disparity vs. Discrimination 21
Association is Not Causation 22
Strength of evidence 24
Statistical Literacy Issues 26
C = CONFOUNDING 27
A = ASSEMBLY37
R = RANDOMNESS 37
$\mathrm{E}=\mathrm{ERRORS}$
$\mathrm{E}=\mathrm{ERRORS}$
47
Putting It All Together: Analyzing Stories
50
Chapter Summary 51
Arguments 51
Between words 53
Mechanism 54
Separate Statistical Literacy from Critical Thinking56

Learning Outcomes

Critical thinking outcomes:

- Distinguish association from causation using an ABC classification.

Statistical literacy outcomes:

- Learn that statistics are numbers in context: they can be influenced.
- Learn that statistics are socially constructed by people with motives and values
- Learn that "take care" is the best advice when dealing with statistics.
- Learn how all influences on statistics can be grouped into four categories.
- Learn CARE categories: Confounding, Assembly, Randomness and Error
- See how each influence can change the size and direction of an association.
- Use Take CARE to analyze statistics in the everyday media

Introduction

The goal of statistical literacy is for you to be able to read, interpret and evaluate the social statistics you encounter in the everyday media.
Consider two news stories published in the same month:

- An article in the British Medical Journal claims "There is overwhelming evidence that excessive consumption [of salt] causes high blood pressure... "
- An article in the Journal of the American Medical Association concludes that "Dietary salt intake has little effect on blood pressure..."

How can these opposite claims be published at the same time? To address that question, you need statistical literacy, the subject of this text. Statistical literacy studies statistics in everyday usage. Statistically literate people think critically about the statistics behind claims like these.

Let's see what statistical literacy means in thinking critically about this story:
Story 1: Fruits, Veggies Cut Risk of Breast cancer
$\underset{\text { Fruits, }}{\text { Vegies }}$ Cut Breast Cancer Risk
Four or more daily servings reduces chances of disease by half

FRIDAY, Oct. 31 (HealthDayNews) -- A diet rich in fruits and veggies can help protect against breast cancer.

A study by Oregon Health and Science University researchers found women who eat at least four servings of fruits and vegetables have a 50 percent lower risk of breast cancer than women who consume no more than two such servings each day.

They reached that conclusion after examining the diets of 378 women with breast cancer and the diets of 1,070 cancer-free women. All the women, living in Shanghai, China, filled out questionnaires that asked about their intake of 108 individual food items, fried and restaurant food, dietary changes, and the use of nutrient supplements and Chinese herbal medicines

First we must decide what the point of the story is. You can see it from the first sentence: Eating lots of fruits and veggies can help protect against breast cancer. The article would have had a different point if it had said Breast cancer was less prevalent among women who ate lots of fruits and veggies than among those who ate little or none. The latter point reports a factual matter; the point actually made claims that there's a cause. Causation is also implied by the action words used in the story: cut and reduces. One aspect of statistical literacy is distinguishing claims of association from claims of causation.

Another aspect of statistical literacy is thinking about the statistics themselves. Statistics are numbers describing data. But they're not pure numbers; they're numbers that measure or count real things. Therefore they can be shaped by
Chapter 2. Comparisons and CARE Solutions
TABLE OF CONTENTS
Learning Outcomes 59
Review 60
Association 60
Two-Group Comparisons 60
Two-Factor Co-variation 68
Confounder Solutions 69
Study Design 70
Experiments vs. Observational Studies 70
Effect Size 79
Selection and Matching 82
Assembly Solution 85
Assembly in Definitions 86
Assembly in Comparisons 87
Randomness Solutions 91
Extremes and Coincidence 91
Big Data and the Law of Very Large Numbers 92
Small Samples, Margin of Error and Statistical Significance 94
Error (Bias) Solution 98
Three Kinds of bias 98
Minimizing bias 0
Analyzing Stories 101
Summary 103
Optional 105

Learning Outcomes

Recognize associations as possible indications of causation

- Analyze associations: two-group vs. two-factor
- Study two-group comparisons: non-arithmetic (ordinal) vs. arithmetic
- Distinguish four kinds of arithmetic associations and exceptions.

Recognize three techniques that deal with confounding

- Distinguish different kinds of experiments and observational studies
- Recognize how different study designs control different confounders.
- Know that a controlled study is "any study involving a control group"
- Distinguish 'control of' and 'control for'.

Study techniques that deal with randomness and bias

- Use overlapping confidence intervals to test for statistical significance
- Recognize bias-control methods: placebo, single and double blind.

Review

Chapter 1 focused on problems: the influences on a statistic. It contained a lot of new material. Here are a few of the highlights.

- showed that statistics are typically used as evidence in arguments.
- introduced statistics as numbers in context, so they can be influenced.
- admonished students to "Take Care" when dealing with statistics.
- used CARE to indicate the four kinds of influence on a statistic.

Review the chapter summary at the end of chapter 1. Review each figure. Identify what is being stated. Understand why the information in the figure is important.
Become familiar with the key words and phrases in the new word list. Becoming statistically literate is like learning a new language. It takes time and repetition.

This chapter introduces some of the solutions to some of the problems in chapter 1. It introduces some things to look for in analyzing the use of statistics as evidence.

Association

As noted in chapter 1, there are two kinds of association: two group comparisons and two-factor co-variation. Both are examined in more detail.

Two-Group Comparisons

The most common form of an association is a two-group comparison. There are three types of two group comparisons ${ }^{72}$: raw comparisons, ordered comparisons and arithmetic comparisons. Raw comparisons just present the values to be compared. Raw comparisons provide the underlying data, but the user must figure out the order and the size of the comparison. Ordered comparison provide order, but lack precision. Arithmetic comparison provide order and precision.

Ordered Comparisons

Ordered comparisons compare two values without mentioning their size or the size of the comparison. "Seniors are older than Juniors," Ordered comparisons are common in headlines and advertisements.

Table 3 presents counts of accidental deaths.

[^4] V1F

To see this, study the above worksheet ${ }^{151}$. There are 28 people at a table: seven on each side. That gives 49 combinations ($7 * 7$) between adjacent sides (top and right; top and left; bottom and right; bottom and left) and opposite sides (top-bottom and left-right). There are four sets of adjacent sides and two sets of opposite sides. This gives a total of 294 pairs given six sets at 49 per set. Finally, there are 21 pairs $(6+5+4+3+2+1)$ for two matches within each of the four sides for a total of 84 pair (4*21) giving a grand total of 378 pairs $(294+84) .{ }^{123}$

With 378 possible pairs hidden inside these 28 people, we can expect one match given one chance in 360 of a match. At least one match is more likely than not.

[^5]
Chapter 3. Understanding measurements TABLE OF CONTENTS

Learning Outcomes 114
Review 115
Data and Data Distributions 115
Continuous Data 116
Measures of Location 118
Ranks 118
Percentiles 119
Measures of Center 122
Mean, Median and Mode 122
Measures of Center vs. Skew 124
Describing and comparing centers of measures 125
From Association to Causation 127
Assembly on Measures of Center 130
Assembly: Defining Groups and Group Averages 130
Assembly: Forming Groups by Choosing a Cut Point 130
Assembly: Choosing a Measure of Center 131
Controlling for Two-Group Confounding 132
Forming and Comparing Per Ratios 134
Untangling Confounding of Averages using Selection 136
Standardizing Averages Arithmetically: Mix Matching 138
Standardizing averages graphically 142
Percentage explained by a confounder 150
The Cornfield Conditions 152
Controlling for Confounding involving Co-Variation 153
Spread 156
Summary 157
Optional 157
Two-Group Comparisons of Measures (Detail) 157

Learning Outcomes

Understand ranks and percentiles.
Recognize the order of mean, median and mode in skewed distributions.

- Compare means, medians or modes using ordinary English.
- Distinguish percent, "percentage points" and "percentile points".
- See how assembly can influence the size of a comparison.

See how shift from totals to ratios can change size \& direction of a comparison.

- Compute weighted average from subgroup averages.

Calculate the influence of a binary confounder on a comparison of two means.

- Standardize using arithmetic mix-matching or a graphical technique
- Use Cornfield conditions to see if nullification or reversal is possible.

V1F
c. Subject is the group. The measure is inside the verb. The determiners are in trailing prepositional phrases

Means: Adults in 2000 are 10 cm taller on average than in 1920.
Modes Adults in 1920 are typically 10 cm taller than in 1920.
Median: Do not use
\#3: Compare two measures (measure1 and measure2) involving one group at one time and place. Assume all involve US families in 2018.
a. Subject is measure1. Measure 2 is in the predicate. Group possessing the measure is in a prepositional phrase.
Long: The average income of families was 25% greater than the median income of families.
Short: Average family income was 25% greater than median income
b. Subject is a phrase involving the group (a possessive adjective) and measure1 (a noun). Sentence predicate is a phrase involving a possessive adjective (groups') and a noun (measure2)*
Long: Families' mean income was 25% more than families' median income. Medium: Families' mean income was 25% more than their median income.
c. Subject is the group; measure1 is in the predicate. Comparison is in relative clause modifying measure1
Short: Families have an average income that is 25% greater than their median income.

Discussion:

It is tempting to say "the average adult male" has a height of 5 ' 10 " instead of saying "The average height of adult males is $5^{\prime} 10$ ". . That usage can be problematic with qualities: The average adult has one testicle and one breast. It is somewhat problematic with discrete quantities: "The average person has less than two legs." Although it is not problematic when describing a continuous quantity, it can be problematic in comparing such a measure for two groups: "The average city in California is bigger than that in Iowa". We don't know the measure. Is it population or area? We don't know. It seems better to connect the measure of center (average, median or modal) with the measure it modifies in a single adjective-noun phrase.

Chapter 4. Describing ratios: Percent and Percentage TABLE OF CONTENTS

Learning Outcomes 160
Review 161
Part-Whole Ratios 161
Part-Whole Ratios 163
Pie Charts of Counts and Ratios: Good and Bad 163
Percent Grammar using Tables of Counts 165
Percent Grammar Statements 166
Percent Grammar: Forming Statements 166
Common Activities involving Count Tables 168
100\% Ratio Tables: Three Kinds 169
Decoding Problems 174
Percentage Grammar 176
Reading percentages in 100% tables 178
Count tables 179
Sports and Portion Grammar 181
Who-Who or Who-What Ambiguity 181
Distribution Grammar 182
Half tables of percentages 183
One-way half-tables of percentages 183
Two-way half-tables of percentages 186
Tables and graphs with missing margins 188
Conclusion 192
Optional 193
Convert statements from percentage to percent grammar 194
Convert statements from percent to percentage grammar 194
Convert questions between Percent and Percentage grammar. 195

Learning Outcomes

Learning outcomes include:

- Identify part and whole in named ratio grammar statements and questions.
- Learn named-ratio grammars: percent and percentage grammar
- Distinguish percent and percentage grammar.
- Translate part-whole statements between percent and percentage grammar.
- Describe percentages ratios in 100% tables and in half-tables.
- Describe percentages in tables with missing margins.
- Recognize the importance of selection and the confusion of the inverse.

Review

In chapter 1, we noted that statistics - unlike numbers - can be influenced. These influences were classified into four groups as the left side of Figure 110 reminds us. The right side points out the confusion of the inverse as a source of Error.
Figure 110 Take CARE and Components of Error

Take C.A.R.E.			
Confounding	Randomness	Take CARE: E	
Assumptions	Error		

Confounding provides an alternate explanation for an association. Assembly includes how things are created, selected, defined, measured and presented.
In chapter 2, we studied four ways to form a two-group comparison. Of these, three involved ratios. Confounders can be controlled physically or mentally as shown on left side of and right side of Figure 111 respectively.

Figure 111 Controlling Confounders: Control Of and Control For

| CONTROL OF CONFOUNDERS | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Physical Control (Grade $=$ Quality) | |

Chapter 3 studied measurements. We studied three easy ways to control for measurement-related confounders: selection, ratios and standardization. The ratios were averages: sum of measures divided by their count.
Ratios are a natural way to control for the influence of a proportionally-related factors such as the size of a group. That may be why ratios are the most common statistic in everyday life. Ratios are the workhorse in the statistical literacy stable.

This chapter studies ratios of counts where the numerator is typically a part of the denominator. Mathematically, this is no big deal. But describing these ratios is a very big deal. It seems fairly simple, but it is not.

Part-Whole Ratios

To be statistically literate, one must be able to read and interpret part-whole ratios in text, tables and graphs.

The simplest way involves prepositions. Third-graders are introduced to countbased ratios using common prepositions such as out of (four out of five doctors recommend Crest) or just of (four of the six slices of pizza had peperroni). Adults may use a less-common preposition: per. Less than one infant per hundred dies from a Covid19 infection.

Prepositions are words that identify specific relationships: spatial (in, out), temporal (before, after), logical (if, then) or quantitative (out of, per)

Part-whole ratios can be expressed using just prepositions. But it is difficult to form comparison of these ratios. By giving some of these ratios names, we can describe and compare ratios more effectively.

In English, there are certain nouns that indicate a particular type of ratio and do so with a unique grammar. In this book, these are called named ratios. ${ }^{192}$

Named ratios are words that indicate the presence of a ratio: nouns such as rate, percentage or chance, or adverbs such as likely or prevalent in comparisons.
Named ratios can be classifed into families that share a common grammar. The five main families are named the percent, percentage, rate, chance and ratio families. These five-named ratio families are grouped in two columns in Figure 112 depending on whether they involve 'per'.
Figure 112 Preposition-Based Ratios and Named Ratios
RATIOS (Using Prepositions)

The 'per' statistics are arguably the most common ratios. ${ }^{193}$ These appear in percent, percentage and rate grammar. Of these three named-ratio families, percent and percentage are the two that are the most error-prone. So, this chapter studies percent and percentage grammar. The next chapter studies the other three.

Treat each named ratio grammar as a new language. You will discover how small changes in syntax (grammar) can produce big differences in semantics (meaning).
Percent signifies per 100. Per 100 can be written in two ways: percent (in the US) and per cent (in the UK). This text uses the US style.

[^6]
Convert questions between Percent and Percentage grammar.

When used in a question, the keyword percentage is used with percent grammar. What percentage of men who run are seniors? This questions is really percent grammar. The whole and part are in the subject and predicate respectively, so seniors is the part. We don't ask, "What percent....?" That would be like asking "What pounds are you?" instead of "What weight are you?"
The keyword percentage can be used in a question with percentage grammar. What is the percentage of men who run? The presence of the before percentage indicates percentage grammar, so runner is the part.

1. To convert questions from percentage to percent grammar simply drop "is the" in "What is the percentage" and convert the relative clause to a main verb. For example, convert "What is the percentage of men who smoke?" to "What percentage of men are smokers?"
2. Converting questions from percent to percentage grammar is straightforward when there is no relative clauses. Change "What percentage" to "What is the percentage". Change the predicate into a relative clause. For example, convert "What percentage of men are smokers" to "What is the percentage of men who are smokers?"
3. In percent-grammar questions with one or two relative clauses, review the options given in converting percent statements to percentage. Convert "What percentage of $<$ whole1 $>$ who are $<$ whole2) are $<$ part1 $>$ who are $<$ part2 $>$? Form the complete part as a single phrase without a trailing relative clause by moving the trailing adjective to a leading adjective. "Among <wholel> who are <whole2>, what is the percentage who are <part2><part1>?"

Convert these questions from percent to percentage grammar:

1. What percentage of college students are smokers?
2. What percentage of college students who are 18-25 are women?
3. What percentage of college students are women who smoke?
4. What percentage of college students who are 18-25 are women who smoke?

Warning: Students may get overloaded with the details of percentage grammar. To skip these details, use these two rules for percentage statements: "The percentage who" always introduces a part. "The percentage of" always introduces a part unless followed by a relative pronoun such as who, what or that.

Chapter 5. Describing Ratios: Rate, Chance and Ratio TABLE OF CONTENTS

Learning Objectives 196
Review 198
Rate Grammar 199
Introducing rates 199
Phrase rate grammar 203
Clause rate-grammar 206
Chance Grammar 208
Ratio Grammar 211
Conclusion: 213
Optional 214
Social Statistics in Graphs and Tables 215
Household (HH) Statistics 215
ncome Earned and Taxes Paid 216
Income Quintile Statistics 217
Income Mobility Statistics 217
Loan Interest-Principle Ratios 218
1860 U.S. Race Census by Geographical Region 219
Social Statistics Involving Children by Race 220
Count Statistics: Murder Victims 221
Law Officers Killed 221
Crime Statistics 222
Income Statistics 225
Clinical Trials 226
Longitudinal Graphs 228
Cross-Sectional Graphs 234

Learning Objectives

1. Rate grammar is most common in dealing with very small ratios.
2. The rate family includes prevalence and incidence
3. The keyword rate is equivocal. It have four forms. It can be a frequency (\# events per unit time), a growth rate ($\%$ increase per unit time), a prevalence (\# of unemployed per 100 members of the civilian labor force) or an incidence (\# of births per year per 100,000 women ages 15-44).
4. Rate grammar has both a phrase form and a clause form.
5. The chance family of grammars includes odds, risk, likelihood and probability.
6. Chance grammars has both a phrase form and a clause form.
7. Chance grammars are common but may often leave the whole unstated
8. The ratio family can easily be involved in the confusion of the inverse.
9. Graphs: recall that a quintile is one-fifth, quartile is fourth and decile is a tenth.
10. Ratios are easily influenced by the choice of the denominator.

Review

In chapter 1, we noted that statistics are numbers in context. Statistics can be influenced. The influences were classified into four groups: Confounding, Assembly, Randomness and Error/Bias. "Take CARE" reminds us of these.
Chapter 3 identified three easy ways to mentally control for confounding: the influence of a related factor. See Figure 135.

Figure 135: Controlling confounding: Control of vs control for
CONFOUNDING

CONFOUNDING		
Control of	Control for	
Experiments	Selection, ratios Observ. studies	Standardize

Comparisons, selection, ratios and standardization all involve assembly. Compared to what? Selected what? Out of what? Standardized by what?

Ratios are the workhorse in the statistical literacy stable. Chapters 4 introduced part-whole ratios using percent and percentage grammar. Among always indicated a whole, while of sometimes introduced a whole. Figure 136 classifies the ratios by the prepositions involved and introduces the five named ratios.

Figure 136 Preposition-Based Ratios and Named Ratios

RATIOS (Using Prepositions)	
Common Prepositions : Of, in, for. To [4 to 3; 4-3; 4:3] 4 out of [every] 5; cut in half	Per Grammar: miles per gallon; mph deaths per 1,000 men
Named-Ratios	Named-Ratios
Ratio Grammar : ratio of women to men student-teacher ratio	Percent Grammar: 85\% of military personnel are men Percentage Grammar: fractionshare
Chance Grammar odds/risk/probability chance of [our] winning; chance that we will win chance to win; chance for a win	percentage of men who bet rate of n per d _ Men died at a rate of n perd

Light-edge boxes need clause for part and whole (cannot compare ratios Light-edge boxes need clause for part and whole (cannot compare ratios
Dark-edge boxes have part and whole in phrases (can compare ratios)

Percent and percentage grammar are extremely susceptible to the confusion of the inverse. Describing percentages in tables and graphs can be tricky.
This chapter studies the three remaining named ratios: rate, chance and ratio.
Chapter 6. Comparing Ratios using Named-Ratios or Likely
Learning Outcomes 239
Review 240
Introduction to Comparisons of Ratios 240
Attributable Comparisons 241
Percentage Attributable (Rate based) 242
Cases (Deaths) Attributable (Rate based) 243
Comparing Ratios: Common-vs-Distinct Part 245
Comparing Ratios Using Named Ratios 247
Reading ratio comparisons using named ratios 247
Constructing named-ratio comparisons 249
Generating short form comparisons 254
Spotting errors in comparisons 254
Comparing part-whole ratios presented in graphs 255
Comparing ratios using likely 256
Decoding 256
Constructing 259
Likely Comparison Grammar: Examples of all Types 261
Conversions into Likely comparisons 262
Common Pitfalls in Likely Comparisons 263
Forming Comparisons: Tables and Graphs 266
Confounding: A Review 267
Chapter Summary 268
Optional Topics 268
Cases (Deaths) Attributable: Multiple Steps 270

Learning Outcomes

1. Calculate the percentage and counts that are attributable to group membership.
2. Distinguish common-part and distinct-part comparisons
3. Write ordinal and arithmetic comparisons involving named-ratio grammar
4. Compare ratios in ordinary English using percentage, rate or chance grammar.
5. Compare part-whole ratios using "Likely" grammar.

Review

In chapter 1, we noted that statistics are numbers in context. Statistics can be influenced. The influences were classified into four groups: Confounding, Assembly, Randomness and Error/Bias. "Take CARE" reminds us of these.
In chapter 2, we formed comparisons. Review the arithmetic and the wording.
Table 79 Arithmetic Comparisons
ARITHMETIC COMPARISONS

Difference	Test is (T-B) more lless than Base
Ratio	Test is (T/B) times as much as Base
\% difference	Test is $[(T-B) / B]^{*} 100 \%$ more \|less than Base
Times difference	Test is $[(T-B) / B]$ times more lless than Base

Chapter 3 identified three easy ways to mentally control for confounding: the influence of a related factor. They were selection, ratios and standardization.
Ratios are the workhorse in the statistical literacy stable. Chapter 4 introduced percent and percentage. Chapter 5 introduced rate and chance. Review these

Table 80 Named Ratio Grammars

CHAPTER 4 NAMED RATIO GRAN

Percent	X\% of <Whole> are <Part>
	Among <Whole>, X\% are <Part>
Pe	The percentage of W who are P is $\mathrm{X} \mathrm{\%}$
	Among W , the percentage who are P is $\mathrm{X} \%$
	Among W , the percentage of P is $\mathrm{X} \%$

Rate (phrase)	The <Part> rate is n per N <Whole>
	The rate of <Part> is n per N <Whole>
Chance	The chance of <Process><Result> is X\%
	<Process's> chance of <Results> is X\%.
	The chance that <Process> will <Result> is X

You need to be very familiar with comparisons and named ratios in this chapter.

Introduction to Comparisons of Ratios

This chapter introduces new arithmetic (the 'attributable to' comparisons) and another named ratio grammar: likely to. To repeat: small differences in syntax (grammar) can create big differences in semantics (meaning).
After this chapter, you should understand the difference between these claims:
"216,000 deaths attributed to obesity" versus "216,000 deaths caused by obesity"
"Among NFL players, blacks charged with more crimes than whites" versus
"Among NFL players, blacks less likely to be charged with crimes than whites."
Chapter 7. Interpreting Confusing Ratios
TABLE OF CONTENTS
Learning Outcomes 271
Review 272
Diabolical Denominators 272
Error: Confusion of the Inverse 275
Medical Tests: Equivocation 277
Social Statistics: Prediction and Explanation 283
Three-term ratios 287
Confounding and Simpson's paradox 288
Smoking and Lung Cancer 288
Simpson's paradox for rates and percentages 289
Cornfield Conditions 290
Other examples 291
Controlling for Confounding using Mix Matching 295
The Biggest Confounder 300
Confounding in the Humanities and Social Sciences 302
Conclusion 303
Optional 304
Comparing Two Ratios with Related Parts 304
Comparing Two Ratios with Related Wholes 304
Distinct and common parts 304
Unclear wholes 307
Comparing a Change in Ratios with Different Wholes 308
Medical Tests: Sensitivity vs. Specificity 311
Cornfield's Second Condition 312
Co-Variation involving Percentages 314
The Scanlan Paradox 315
Converting Multiple Groups into Two Groups 316

Learning Outcomes

1. Identify and evaluate inverse ratio claims (the confusion of the inverse)
2. Distinguish different kinds of accuracy and error in medical tests.
3. Calculate predictive accuracy given test accuracy and disease prevalence.
4. Distinguish different kinds of statements involving social statistics.
5. Understand the Cornfield conditions: the necessary conditions to nullify or reverse an association.
6. Understand Simpson's paradox
7. Standardize percentages by mix-matching: algebraic and graphical

Review

In chapter 1, we noted that statistics - unlike numbers - can be influenced. In CARE, recall that Error included 'wrong order'. See Figure 198. For ratios, this is known as the confusion of the inverse.
Figure 198: CARE: Classifying Error
CARE: ERROR
CARE: ERROR

Wrong Order	Bias	Lies
Subtract, Divide	Subject	Mistakes
Comparisons	Measurement	Prevarication
Ratios	Sampling	Weasel words

In chapter 2, we studied two group comparisons. We learned that study design (experiments) can protect statistics from various types of confounders.

Figure 199: Control Confounding: Control Of and Control For

CONTROL OF CONFOUNDERS Physical Control (Grade = Quality)		CONTROLLING FOR CONFOUNDERS Take into account (mental)	
Experiment	Observational Study	Can do by hand	Calculator/Computer
A+ Scientific	C Longitudinal	1 Select/Stratify	4 Linear Regression
A- Random Assign	Cross-sectional	2 Form Ratios	5 Logistic Regression
B Quasi-Exper	F Anecdotal story	3 Standardize	6 Multivariate Regress

In chapter 3 we studied some of the easier mental ways to control for confounders. Selection and forming ratios are the simplest.
In chapters 4 and 5 , we studied ratios of counts using the named ratios. We recognized that the confusion of the inverse is a major problem. In chapter 6 we studied comparisons of ratios.
All of this is background to this chapter. Chapters 3-6 are like calisthenics. This chapter and the next are the payoff! It's time to apply what you've learned.

Diabolical Denominators

Mathematically, a denominator is just another number. School students work problems changing the units of denominator: from inches to centimeters or from pounds to kilograms. But linguistically, the denominator is much more important. It may seem innocent or trivial, but as you will see, it is almost diabolical.

Diabolical denominator: Changing the denominator can change the direction of an association between two ratios. See Table 85:

Table 85: Annual Expenses per Household (HH) and per HH Reporting

Microwave/year	1980	1987	Chg	Babysitting / year	1986	1987	Chg
per household:HH	\$14	\$20	43\%	per household:HH	\$76	\$75	-1\%
Percent reporting	2.9\%	8\%	176\%	Percent reporting	6.8\%	6.4\%	-6\%
per HH reporting	\$483	\$250	-48\%	per HH reporting	\$1,118	\$1,172	5\%
\|ls.gov/opub/mir/1992/05/art3full.pdf			Table 1	www.bls.gov/opub/mir/1992/05/art3full.pdf			Table

Chapter 8. Randomness

"If there is a 50-50 chance that something can go wrong, then 9 times out of 10 it will." Paul Harvey News, Fall 1979.
Learning Outcomes 317
Review and Background 318
Idea of Statistical Significance 318
Good and Bad of Statistical Significance 319
Influencing Statistical Significance 321
Influenced by Confounding 321
Influenced by Assembly 323
Influenced by Error or Bias 324
Statistical Significance and Unlikely Outcomes 325
50% Chance the Alternate is True 326
Unlikely that the Alternate is True 327
Political Polls 328
Random Samples 330
Margin of Error in Subgroups 332
Survey Margin of Error 332
Statistical Significance Stories 334
Statistical Significance: Applicability 336
Unexpected if Due to Chance: Evolution 337
Common Misunderstandings Involving Chance 338
Chapter Conclusion 339

Learning Outcomes

1. Understand the good and bad of statistical significance
2. See when statistical significance can be influenced - transformed from significance to insignificance or vice versa - by confounding, assembly and bias
3. Calculate confidence intervals given the margin of error for subgroups

- Calculate the margin of error for subgroups
- Determine if a difference in subgroup means is statistically significant

4. Distinguish polls from surveys. Polls predict; surveys summarize.
5. Analyze statistical significance impact on clinical trials
6. Identify some common misunderstanding involving chance

Review and Background

Chapter 1 showed how randomness can influence statistics in three areas: extremes, big data and small samples.

1. Extreme outcomes are often just coincidence and can't be replicated.
2. Big data makes it more likely that unlikely outcomes will occur.
3. Small samples make it easier for random variation to influence the results.

Chapter 2 introduced three quantitative ideas involving randomness:
\#1: Law of Very Large Numbers. Qualitatively: The unlikely is almost certain given enough tries. Quantitatively: If an event has one chance in N and there are N tries, then one event is expected: the chance of at least one event is more likely than not.
\#2: The margin of error is the expected error in random sampling. To form a confidence interval, add and subtract the margin of error to the sample statistic.
\#3: A sufficient condition for statistical significance between the means or proportions of two samples is the lack of overlap in their confidence intervals.

Statistically significant describes an outcome that is very unlikely if due just to chance. Statistical significance is evidence for: 1) treating a sample association as real (not spurious) in the population, and 2) treating the difference in a randomly controlled trial as caused by the treatment.

Idea of Statistical Significance

One measure of randomness in the everyday media is the phrase 'statistical significance' or 'statistically significant'. Yes, we don't encounter it very often, but there are times when it is extremely important. Approving new vaccines requires that the results be statistically significant. So this chapter begins with that idea.

Statistical significance is a very abstract idea. It deals with situations that are unlikely. This combination makes it difficult to understand. Let's think about the idea outside of statistics.

Suppose you are in a relationship. You've left a call and three texts with no answer. Normally, you get quick replies. An hour passes, then three hours, then ten. At some point you begin to think. Has something happened? Was there an accident? Is the relationship over? At some point the time delay becomes 'significant'. It is very unlikely: beyond what is normal, abnormal.
Suppose you are a manager. You've learned through experience, that you can't afford to deal with every problem that crosses your desk. You've learned 'management by exception': a "policy by which management devotes time to investigating only those situations in which actual results differ significantly from planned results. " This idea was propounded by Frederick Winslow Taylor.

Acknowledgements

To my academic guides (Bernie Folz, Bruce Reichenbach and Mark Engebretson), my intellectual guides (Eileen Schield, Ken Atkinson, Sandy Schield-Carey and Douglas Rasmussen), my conceptual guides (Ayn Rand, Leonard Peikoff and Richard Connell), my entrepreneurial guides (Wilbur, Vern and Marshall Schield, George Hock, Signe Schield and John Cerrito) and my statistics teachers (Gerald Kaminski, Peter Holmes and Don Macnaughton).

To my statistical guides: some used statistics as evidence (Charles Murray, Thomas Sowell, Julian Simon, John Lott and Gerald Bracey) and some analyzed statistics as evidence (Freedman et al., Vic Cohn, Hans Zeisel, John Brignell, Jessica Utts, J. H. Abramson, Stanley Lieberson, Robyn Dawes and Howard Wainer).

To Augsburg University for approving two catalog courses: Statistical Literacy (GST 200 in 1997) and Statistical Literacy for Managers (MIS 264 in 2011).
To Bob Hogg who said at JSM 1995: "I'm tired of people talking about problems in the introductory course. I know there are problems. I've written about some of the problems. I want someone to come up with a solution. I want them to write up their solution so I can see it and try it for myself. Then I will know how good it is". I vowed then that I would write that book. Bob, this book is for you.
To my W. M. Keck project design guides (Magda Paleczny-Zapp and John Knight), my partners (Donald Rubin and Judea Pearl), and my project supporters (Lynn Steen, Peter Holmes, David Kelley, Phil Shively and Allan Rossman).
To the Augsburg project observers who reviewed these materials in class (Linda Schield, Lena Zakharova, Bill Jasperson, Julie Naylor, Boyd Koehler, Peggy Cerrito, Bob Korn, and Cynthia Schield), and to those who reviewed these materials (Larry Copes, Merlin Jetson, Tamra Mason and Robert Geibitz).

To Joel Best, the author of Damned Lies and Statistics, for his quintessential contribution-that all reality-based statistics are socially constructed.
To my friend and colleague (Tom Burnham) for 30 years of brutally clear thinking and to my colleague (Marc Isaacson) for 15 years of helpful ideas and feedback. To Alison Oliver for encouraging me to submit my book idea to Wiley for publication. To Carl Lee for nominating me as an ASA Fellow ${ }^{325}$ and to Danny Kaplan, Jeff Witmer, Chris Wild, Herb Weisberg and John Bailar for supporting my application. To Erik Erhardt for choosing to implement this course at the Univ. of New Mexico.

A very special thanks to the W. M. Keck Foundation - and to Mercedes Talley in particular - for their 2001 grant "to support the development of statistical literacy as an interdisciplinary curriculum in the liberal arts." Their entrepreneurial grant made this project viable and this book a possibility. A most special thanks to my wife, Cynthia, who encouraged me to get this book done.

[^7] V1F

Table of Figures

Figure 1: Important things to know about statistics .. 10
Figure 2: An Argument is Like a House ... 12
Figure 3: Minutes to Defibrillation vs. Heart Attack Survival 13
Figure 4: Imported Lemons versus Highway Fatalities 13
Figure 5: CARE identifies the four kinds of factors that influence a statistic..... 14
Figure 6: Statistics as Evidence in an Argument: Take CARE 15
Figure 7: Distinguishing critical thinking from statistical literacy 56
Figure 8: Association (Statistical): Comparison vs. Co-Variation 16
Figure 9: Association Diagrams ... 17
Figure 10: Association Shown Graphically... 17
Figure 11: Arrows Indicating Causation .. 19
Figure 12: A-B-C Grammar... 19
Figure 13: Association is typically evidence of causation (somewhere)............. 20
Figure 14: Disparities are not [necessarily] Discrimination 21
Figure 15: Prevalence of Suicide by German Provinces in the 1500s................ 22
Figure 16: Argument as a House .. 25
Figure 17: House Graphs for Three Arguments.. 25
Figure 18: Statistics as Evidence in an Argument (House) 26
Figure 19: Triangle Diagrams Involving Confounding 28
Figure 20: Take CARE: Confounders by Type of Association 28
Figure 21: Common-Cause Triangle: Ice Cream \& Burglaries 29
Figure 22: Single-Cause Triangles: Sickle-cell anemia \& Better economy 29
Figure 23: Triangle Diagram of a Confounder: Golf Courses \& Divorces 30
Figure 24: Down syndrome: Increase by Birth Order and Mom's Age............... 31
Figure 25: Story Diagrams for Father and his Kids ... 31
Figure 26: CARE: Classification of Assembly: A top-level overview................ 32
Figure 27: Global Temperatures since 1940 (left) since 1820 (right) 36
Figure 28: CARE: Classify Randomness; Sports Illustrated Jinx 37
Figure 29: After 1st try: Best did worse; Worst did better................................. 38
Figure 30: Random Characters Generating Words .. 39
Figure 31: Galton Board (Bean Machine)... 41
Figure 32: CARE: Classifying Error ... 42
Figure 33: Class Scores versus Class Size (Random data)................................ 44
Figure 34: Bias: Survivor bias (left); Bias vs imprecision (right) 45
Figure 35: Error in tests: false positive versus false negative............................. 47
Figure 36: Take CARE Influences on a Statistic ... 50
Figure 37: Chapter 1 key words, phrases and ideas ... 50
Figure 38: Inferences from Observed to Unobserved .. 52
Figure 39: Classifying third factors to an Association.. 55
Figure 40: Triangle Diagram of a Mechanism: Lighting Causes Thunder.......... 55
Figure 41: Runs from random flips of a fair coin ... 56
Figure 42: Randomly Scattered Grains of Rice .. 57
Figure 43: Randomly-generated birthday date matches 58
Figure 44: Six Ordered Comparisons ... 61
Figure 45: Template: Four Kinds of Arithmetic Two-Group Comparisons... 63
Figure 46: Template: Four Grammatical Forms of Co-Variation68
Figure 47: Confounder Solutions: An Overview 69
Figure 48: Studies: Controlled vs Uncontrolled. 70
Figure 49: All Studies: Common \& Technical Names72
Figure 50: Random Assignment 73
Figure 51: Random Assignment Nullifies Prior Confounding 74
Figure 52: Salk vaccine clinical trial 74
Figure 53: Quasi-Experiments: Types Of. 75
Figure 54: Influence of Advertising on Consumer Response 76
Figure 55: Salk vaccine: Random assignment vs. quasi-experiment 76
Figure 56: Cigarette consumption and lung cancer deaths 77
Figure 57: Health Benefits of Smoking Cessation 77
Figure 58: Cross-sectional studies involving comparison and covariation 78
Figure 59: Golf scores versus Age 78
Figure 60: Studies: Controlled vs Uncontrolled 79
Figure 61: Experiments vs. Observational Studies: Ranking 80
Figure 62: Two Types of Control 82
Figure 63: Assembly/Assumption Solutions (An overview) 85
Figure 64: Antarctic Temperature Data 88
Figure 65: CARE: Classification of Randomness 91
Figure 66: Business Performance: Before and After a Given Year. 91
Figure 67: Meaningful words from randomly-generated letters 93
Figure 68: Test Scores vs. Class Size: Above Average and All Scores 96
Figure 69: Take CARE: Error. 98
Figure 70: Summary of Arithmetic Two-Group Comparison Grammar 104
Figure 71: Chapter 2 Keywords, Phrases and Ideas 104
Figure 72: Study Design: Control Of Confounders. 104
Figure 73: Scientific Experiment: Before/After Brief Run. 106
Figure 74: Repeated Measures of Pulse Rates (Longitudinal) 110
Figure 75: Longest Run of Heads in Flipping Fair Coins 111
Figure 76: Structures formed by grains of rice dropped randomly 112
Figure 77: Birthday problem: Random birth dates for 28 people at a table 112
Figure 78: Column Charts of Discrete Categories or Values 115
Figure 79: Continuous Data: Histogram and Column Chart 116
Figure 80: Shapes of Distributions 117
Figure 81: Distribution of Student Grades and House Prices 118
Figure 82: Cumulative Distribution of Houses by Price 119
Figure 83: Percentiles on ACT and SAT Tests 120
Figure 84 Distribution of House Prices: Mean. 122
Figure 85 Distribution of House Prices: Median 122
Figure 86 Distribution of House Prices: Mode 123
Figure 87 Centers for Symmetric Unimodal Distributions 124
Figure 88 Centers for Right-Skewed Distributions 124
Figure 892000 U.S. Distribution of Deaths by Age and Sex 125

Figure 90 US mass shootings and Mean Verbal SAT scores 127
Figure 91 Heart Attack Prevalence vs. Cholesterol Level................................ 130
Figure 92 Confounders: Control Of and Control For....................................... 132
Figure 93 Take Into Account Confounder Influence 132
Figure 94 U.S. Income Distribution: Before/After Adjust................................ 133
Figure 95 State NAEP Scores Confounded by Internet Access 137
Figure 96 Weighted-Average Graph for Silverware (1/3)................................ 142
Figure 97 Weighted-Average Graph for Silverware (2/3)................................ 143
Figure 98 Weighted-Average Graph of Silverware (3/3) 144
Figure 99 Triangle for Average Cost of Silverware.. 145
Figure 100 LA vs. WV NAEP Scores (Raw).. 146
Figure 101 LA vs. WV NAEP Scores (Standardized) 147
Figure 102 Standardizing Race-Based Incomes: Step 1 149
Figure 103 Standardizing Race-Based Incomes: Step 2 149
Figure 104 Standardizing Race-Based Incomes: Step 3 150
Figure 105 Summarizing the Math scores example ... 153
Figure 106 Summarizing the black-white family income gap......................... 153
Figure 107 Major League Wins vs. Total Payroll... 154
Figure 108 Distribution of IQs (left) and Boy-Girl Ratios by IQ (right) 156
Figure 109 Chapter 3: Keywords, Phrases and Ideas...................................... 157
Figure 110 Take CARE and Components of Error... 161
Figure 111 Controlling Confounders: Control Of and Control For.................. 161
Figure 112 Preposition-Based Ratios and Named Ratios 162
Figure 113: Controlling for relevant confounders.. 163
Figure 114 Pie Charts: OK (left) and bad (right) .. 164
Figure 115 Pie Charts: Smokers (left) and Students (right).............................. 164
Figure 116 Percent grammar questions .. 165
Figure 117 Template for Percent Grammar Statements................................... 166
Figure 118 Part-Whole Grammars: General Decoding Rules 168
Figure 119 Percent Grammar Statements: Specific Rules.............................. 168
Figure 120 Answer Part-Whole Questions using Count Table Data 168
Figure 121 Create Part-Whole Ratio Table from a Count Table....................... 168
Figure 122 Describe a specific Percentage in a 100\% Table............................ 170
Figure 123 Margin Values: Sums or Averages ... 170
Figure 124 Part-Whole Pie Chart: Age of Drivers in Accidents 174
Figure 125 Template for Percentage Descriptions .. 177
Figure 126 Using a Pie Chart to Represent a Part-Whole Ratio....................... 178
Figure 127 Distribution of Religions by Race (Of Races by Religion)............. 182
Figure 128 Margin Value Rule.. 184
Figure 129 Requirements for One-Way Half Tables in Columns 185
Figure 130 Missing Margin Rule.. 188
Figure 131 Measuring Happiness ... 190
Figure 132 Percent and Percentage Grammar Summary 191
Figure 133 Chapter 4 Keywords, Phrases and Ideas... 192
Figure 134 Controlling for Confounders (Repeat)... 192

Figure 135: Controlling confounding: Control of vs control for 198
Figure 136 Preposition-Based Ratios and Named Ratios 198
Figure 137: Template for Rate Descriptions: Phrase-Based 203
Figure 138: Rate Grammar Decoding Rules .. 204
Figure 139: Pie Diagram: Rate of Accidental Deaths 204
Figure 140: Template for Clause-Based Rate Descriptions 207
Figure 141: Percentage and Rate Grammar in Titles and Comparisons........... 207
Figure 142: Template for Chance Descriptions: Clause-Based 209
Figure 143: Template for Chance Descriptions: Phrase-Based 209
Figure 144: Wheel of Inference (Repeat)... 210
Figure 145: Rules for Decoding Descriptions of Ratios 212
Figure 146: Chapter 5 Keywords, Phrases and Ideas...................................... 213
Figure 147: FDA Drug Approval Success Rates... 226
Figure 148: US Death Rate 1960-2017: Crude and Age-Adjusted................... 228
Figure 149: US crude birth rate: 1800-2020... 228
Figure 150: Covid19 Infections, Cases and Infection-Case Ratio 229
Figure 151: US Covid19 Daily Deaths-per Case and US TSA Passengers...... 229
Figure 152: CPI: 2020-2021 .. 229
Figure 153: Interest Rates on US 10 Year Treasury Notes since 1964 230
Figure 154: Interest Rates on US 10 Year Treasury Notes since 2019 231
Figure 155: US Total Mortgage Debt since 1950 ... 231
Figure 156: US Autopsy Rates per 100 Deaths by Cause................................ 232
Figure 157: Distribution of Black Families by Marital Status since 1950 232
Figure 158: Delinquency Rates: Auto Loans and Student Loans since 2003... 233
Figure 159: Consumer debt components since 2003....................................... 233
Figure 160: GDP per capita since 1270 and US Federal Debt thru 2020......... 233
Figure 161 High School Graduation Rates by Gender.................................... 234
Figure 162 Distribution of Covid Hospitalizations by Age (2021) 234
Figure 163 Distribution by Vaccination Status (2021) 234
Figure 164 Classification of Households.. 235
Figure 1652019 Median Income: Household vs. Family 235
Figure 166 Distribution of Households by Income. PDF \& CDF 236
Figure 167 Cumulative Distribution of Households and Total Income............ 236
Figure 168 Male Testosterone versus Age ... 237
Figure 169: Crime rates by city size .. 237
Figure 170: State's Covid Vaccination rates by race....................................... 238
Figure 171: Percentage Attributable to an Exposure....................................... 242
Figure 172: Common-part comparison of Part-Whole ratios 246
Figure 173: Distinct-parts comparison of Part-Whole Ratios.......................... 246
Figure 174: Two Pie Diagram ... 246
Figure 175: Pie Compare for Example 1: Common Part 248
Figure 176: Pie Compare for Example 2: Distinct-Part Comparison 248
Figure 177: Compare two percentages as a percentage difference................... 249
Figure 178: Compare two percentages as a difference: larger as the base. 250
Figure 179: Compare two rates using a ratio comparison................................. 250

Figure 180: Compare two probabilities using a ratio comparison.................... 250
Figure 181: Ratio Comparison of Named Ratios: Percentage grammar 251
Figure 182: Percent difference compare of Ratios; Percentage grammar 252
Figure 183: Percent difference comparison of Named Ratios: All.................... 253
Figure 184: Common-Part Ratio Compare Template: Percentage Grammar.... 253
Figure 185: Distinct-Part Ratio Compare Template: Percentage grammar....... 253
Figure 186: Creating Short Form Comparisons from Long Forms 254
Figure 187: Common Part Comparison using Two Pie Charts......................... 254
Figure 188: Two Pie Comparisons .. 255
Figure 189: Rules for Likely Comparisons of Ratios 257
Figure 190: Common Part Comparison using Two Pie Charts......................... 257
Figure 191: Distinct Part Comparison using a single Pie Chart 257
Figure 192: Likely comparison template: common-part compare.................... 259
Figure 193: Likely comparison template: distinct-parts compare 260
Figure 194: MS Word: as likely ... than... Suggested corrections............... 264
Figure 195: Chapter 6 Keywords, Phrases and Ideas....................................... 268
Figure 196: Two-Group Comparisons, Named Ratios and Comparing Ratios. 268
Figure 197: Deaths Attributable to an Exposure ... 270
Figure 198: CARE: Classifying Error .. 272
Figure 199: Control Confounding: Control Of and Control For....................... 272
Figure 200: Covid Data (Michigan vs. Rhode Island) 273
Figure 201: Crimes by Level for Gender and Race ... 274
Figure 202: Crimes by Level (include Committed) for Gender and Race 274
Figure 203: Leading Causes of Death in 2001 .. 287
Figure 204: Ronald Fisher and Jerome Cornfield .. 288
Figure 205 Greatest Contributions of Statistics to Human Knowledge 289
Figure 206: Triangle Diagram: Hospital Death Rates and Patient Condition ... 289
Figure 207: Death Rates by Hospital and by Patient Condition 291
Figure 208 Death Sentence Rates by Race of Murderer and Victim................. 292
Figure 209 Magazine Subscription Renewal Rates ... 294
Figure 210 Basketball Completion Rates by Team and Type of Shot 295
Figure 211: Mix-Matching Graphically: Hospital Death Rates (data) 297
Figure 212: Mix-Matching Graphically: Hospital Death Rates (Crude)........... 297
Figure 213: Mix-Matching Graphically: Hospital Death Rates (Adjusted) 298
Figure 214: Comparative Binary Separations ... 301
Figure 215: Chapter 7 Keywords, Phrases and Ideas....................................... 303
Figure 216: Compare Suicides for Widows vs. Widowers............................... 306
Figure 217: Prevalence by Hospital: Death vs. Poor-Health 313
Figure 218 Distributions by Month: Renewals vs. Directs.............................. 313
Figure 219 Prevalence by Team: Completions vs. Two Pointers..................... 314
Figure 220: Down syndrome: Child's Birth Order and Mom's Age 316
Figure 221: Statistical Significance: Crude Statistics 321
Figure 222: Statistical Significance: Crude and Adjusted Statistics................. 323
Figure 223: Statistical Significance: Different Definitions............................... 323
Figure 224: Statistical Significance: Biased and Unbiased 324

Figure 225: Random Sampling: Simple and Stratified 330
Figure 226: Random Sampling: Cluster and Systematic 331
Figure 227: Random Sampling: Classification and Evaluation 331
Figure 228: Chapter 8 Keywords, Phrases and Ideas. 339

Table of Tables

Table 1: U.S. persons living with AIDS... 35
Table 2: U.S. presidential elections where taller candidate won........................ 51
Table 3: U.S. Accidental Deaths by Type of Accident (US CDC)...................... 61
Table 4: Average Weight by Smoking Status and Gender 84
Table 5: US Professional Degrees; Households by Size.................................. 115
Table 6 Distribution of Heights for U.S. Twenty-year olds............................. 120
Table 7: Average U.S. Family Income by Quintile and Top 5\% in 2003 121
Table 8: 1999 U.S. Family Incomes by Family Type 125
Table 9: Survival from Constant Rate of Decay (Exponential)........................ 125
Table 10: Family Incomes by Highest Education: Median and Mean 128
Table 11: Family Incomes by Wage Earners: Median and Mean........................ 129
Table 12: State Prison Operating Expenses: California vs. New York 134
Table 13: State Prison Operating Expenses: Maryland vs. Kansas 135
Table 14: State Prison Operating Expenses: Minnesota vs. Maine 135
Table 15: State Prison Operating Expenses: Minnesota vs. Iowa 135
Table 16: NAEP 2000 8th Grade Math Scores: VA vs. TX 136
Table 17 SAT Verbal Scores by Race: 2002 vs. 1982 137
Table 18: NAEP Scores 4th Grade Math (Crude): LA vs. WV......................... 139
Table 19: NAEP Scores 4th Grade Math (Adjusted): LA vs. WV 140
Table 20: Mean Family Incomes (Crude) by Race \& Marital Status................ 140
Table 21: Mean Family Incomes (Adjusted) by Race \& Marital Status 140
Table 22: SAT Verbal Scores by Race: Crude.. 141
Table 23: SAT Verbal Scores: Standardize 2002 scores on 1982 weights 141
Table 24: Silverware Average Costs: Crude and Adjusted.............................. 145
Table 25: NAEP Scores 4th Grade Math: LA vs. WV 145
Table 26: Mean Family Incomes by Race \& Marital Status............................. 148
Table 27: Family Income by Race: Crude vs. Adjusted 151
Table 28: Toy Table of College Students.. 165
Table 29: Toy Table of Students: Row Percentages ... 168
Table 30: Sample Table of Row Percentages.. 169
Table 31: Sample Table of Column Percentages ... 169
Table 32: Sample Table of Total Percentages... 169
Table 33: World Population by Religion and Continent (1996)........................... 171
Table 34 U.S. Distribution of First Marriages by Woman's Age (\%) 172
Table 35 U.S. Women: Distribution by Contraceptive Status 173
Table 36 U.S. Age of Licensed Drivers and Drivers in Accidents................... 174
Table 37: Sample Table of Column Percentages .. 178
Table 38: Sample Table of Row Percentages.. 179
Table 39: U.S. Teacher Status: 2004-05 vs. 1988-89 179
Table 40 U.S. Lifetime Mobility by Religious Preference 180
Table 41 Sample One-Way Half Table ... 183
Table 42 Sample: Percentage Uninsured with Helpful Titles............................ 183
Table 43 Percentage Uninsured with Unhelpful Titles 184
Table 44 Cigarette Smoking ... 185
Table 45 Moral Acceptability of Activities by Age Group. 185
Table 46 Full Three-variable Table: Row-Percentages 186
Table 47 Smokers Two-Way Half Table (Helpful title) 186
Table 48 Smokers Two-Way Half Table (Unhelpful title) 187
Table 49 Percentage overweight or obese 187
Table 50 U.S. 2004 School Status Dropouts of 18-24 year olds 188
Table 51 Percentage of Marijuana or Hashish Users by Age 189
Table 52 U.S. Percentage of Smokers by Age 189
Table 53 Abortion Percentages by Party 190
Table 54: U.S. Current (last month) Drug Use Percentages 190
Table 55 U.S. 1990 Accidental Deaths by Race and Sex (Frequency). 201
Table 56 U.S. 1990 Population by Race and Sex (Count) 201
Table 57 U.S. 1990 Accidental Death Rates by Race and Sex (Incidence) 202
Table 58 Auto Traffic Death Rates in the U.S 205
Table 59 Distribution of Households by Family Structure and Race 215
Table 60 Historical data on divorced women who remarry 216
Table 61 Distribution of US Income and Federal Tax: 1980-2018 216
Table 62 Factors Influencing Income Distribution 217
Table 63 Income Mobility 217
Table 64 Total Interest Paid as a percentage of the Loan 218
Table 651860 US Census: Slaves by geographical region. 219
Table 661860 US Census: Distribution by Slaves per Household 219
Table 67 Distribution of Slave-Owning Households and Slaves. 220
Table 68 Percentage of US children who live with a single parent by race 220
Table 69 NYC Race/Ethnicity Distribution: Foster Care vs. Population 221
Table 70 Number of Murder Victims by Race, Sex and Age 221
Table 71 Law Officer Killed by Race and Sex of Offender 221
Table 722019 Percentage of victimizations reported to police 222
Table 73 Violent crime rates: reported and unreported. 222
Table 74 Violent incidents by sex and race of victim and offender 223
Table 75 Educational Attainment of those Formerly Incarcerated 223
Table 76 People killed by the police: counts and percentages. 224
Table 77 Family Net Worth and Income: Mean and Median 225
Table 78 Family Income by Characteristic: mean and median. 225
Table 79 Arithmetic Comparisons 240
Table 80 Named Ratio Grammars 240
Table 81: Students by Sex and Smoking Status. 251
Table 82 Percentage who are Runners by Sex and Smoker 252
Table 83: U.S. Unemployment Rates by Highest Grade, Sex \& Race. 252
Table 84: IQ and Prison: Toy table of Counts 269
Table 85: Annual Expenses per Household (HH) and per HH Reporting 272
Table 86: Covid19 Death Rates: Michigan vs. Rhode Island. 273
Table 87: DNA Match: Confirmation vs. Prediction 277
Table 88: Outcomes of a Medical Test 278
Table 89: Quality of a Medical Test in Confirming (column) 278
Table 90 Quality of a Medical Test in Predicting (row). 279
Table 91 Medical Test, Blank Form for Counts 280
Table 92 Medical Test to Detect HIV, 95% Accurate 0.1% Prevalence. 280
Table 93 Medical Test to Detect HIV, 95\% Accurate, 1\% Prevalence. 281
Table 94 Medical Test to Detect HIV, 99\% Accurate, 1\% Prevalence. 281
Table 95 Medical Test to Detect HIV, 95% Accurate, 50\% Prevalence. 282
Table 96 Gave Birth in Last Year by Gender among Young Adults. 283
Table 97 Toy Table: Police Calls, 90\% Accuracy; 10\% Prevalence. 284
Table 98 Toy Table: Police Calls, 90% Accuracy; 50% vs. 90% Prevalence... 28285
Table 100: Suicide-Bulimia Connection (Toy data) 286
Table 101: Male juveniles: Abuse Crime Connection (Toy data) 286
Table 102: Mortality by Hospital 289
Table 103: Mortality by Hospital and Patient Condition 290
Table 104: Death Sentence Rates and Counts by Race of Murderer. 292
Table 105: Death Sentence Rates and Counts by Race of Victim 292
Table 106: Death Sentence Data by Race of Murderer and Victim 292
Table 107 Renewal Rate by Division and Month 293
Table 108 Renewal Rate by Division 293
Table 109 Basketball Field Goals by Team \& Shot 295
Table 110 Basketball Field Goals by Shot. 295
Table 111 Mix-Matching Arithmetically: Hospital Patient Death Rates 296
Table 112 Mix-Matching: Murderers' Death Sentences 298
Table 113 Mix-Matching: Magazine Renewal Rates. 299
Table 114 Mix-Matching: Basketball Shots Made 299
Table 115 Percentage who smoke by sex, weight, runner and height. 301
Table 1161990 U.S. Accidental Death Rates by Race and Gender. 301
Table 117 U.S. Poverty Rates by Race and Age 301
Table 118: Single Parents by Race and Ethnicity 306
Table 119 Registered Adults vs Registered Voters (toy data) 308
Table 120 Infant Deaths per 1,000 Births by Cause: 1920 vs. 1960 309
Table 121 Greenhouse Gas Concentrations 310
Table 122 Medical Tests: Pap Smears 312
Table 123: Mortality of Hospital Patients by Condition. 312
Table 124 Subscriptions Due by Division and Month 313
Table 125: Infant Mortality Rates: 2000 vs. 1990 315
Table 126 Percentage of Births which are Low Weight (toy data) 322
Table 127 Hypothesis test as Medical Test: 50\% Prevalence 326
Table 128 Hypothesis test as Medical Test: 5\% Prevalence. 327
Table 129: Hypothetical Presidential Poll Data; Distribution of Voters 333
Table of Stories
Story 1: Fruits, Veggies Cut Risk of Breast cancer 8
Story 2: Two Hunters and a Bear 25
Story 3: Father's kids out of control 27
Story 4: Child Abuse in Minnesota: 35
Story 5: Every 14 seconds, AIDS turns a Child into an Orphan 36
Story 6: Similarities between Presidents Lincoln and Kennedy 40
Story 7: IQs of U.S. Presidents 45
Story 8: Self-selection bias: Surveys 46
Story 9: Risk of Dying (generic) 47
Story 10: Unfair boss could shorten your life: study 48
Story 11 Galileo Tower of Pisa. 73
Story 12 Harvey Circulation of Blood73
Story 13 Random Assignment: Lady Tasting Tea: 74
Story 14: Salk vaccine reduces Polio Risk 76
Story 15: Study: Placebos Make People Feel Better.98
Story 16: Placebo Usage Criticized 100
Story 17: Do Magnets Reduce Pain? 101
Story 18: Teens who eat breakfast weigh less 102
Story 19 Random Assignment: Tinctures as Cures. 107
Story 20 Random Assignment: Cure for Tuberculosis 108
Story 21: Quasi-Experiment: Lemons and Scurvy 108
Story 22: Quasi-Experiment: Cowpox and Small Pox

\qquad 108
Story 23: Quasi-Experiment: Prontosil Reduces Mother's Risk of Death 108
Story 24: Does Smoking Increase the Risk of Lung Cancer? 110
Story 25: Percentiles Involving Admission to Law School 121
Story 26: U.S. Distribution of Incomes 133
Story 27: Do You Worry More About Your Health? 265
Story 28: What to do when you test positive for HIV 279
Story 29: Suicides: More Widows than Widowers 305
Story 30: Increase in Health Costs. 307
Story 31 Each Daily Soda Increases Obesity Risk 60\%. 314
Story 32: Diabetes drug effective 334
Story 33. Duct tape no magical cure for warts, study finds (Generic). 335
Story 34. A Double-Blind Test of Astrology 335

Table of Equations

Eq. 1 N times as much as $=(\mathrm{N}-1)^{*} 100 \%$ more than... 65
Eq. 2 N times as much as $=(\mathrm{N}-1)$ times more than .. 65
Eq. 3Confidence Interval: Sample Statistic \pm Margin of Error 97
Eq. 4Mean = Sum of value / \# of subjects ... 122
Eq. 5Weighted Ave: (Wt1*Ave1 + Wt2*Ave2 + ...) / Sum(Weights)................ 138
Eq. 6Weighted Ave: (Ave1*Associated fraction + Ave2 * Associated fraction/1
Eq. 7Percentage difference explained: 100% (Before - After)/Before............ 150
Eq. 8Part-whole percentage $=(\#$ Part / \#Whole) x 100\%................................ 166
Eq. 9Percentage attributed to exposure $=100 \%$ *(ExpRate-CtrlRate) $/$ ExpRate 242
Eq. 10 Cases attributed to exposure $=\%$ Attributed $*$ \# cases exposed 244
Eq. 11 ME(subgroup) = ME(group)*SQRT(1/Fraction) 332

Glossary

100\% Sum
Rule
Accuracy:
Confirmation

Prediction explanation

Ambiguous
Anecdotal
evidence
comparison
evidence
Argument:
sound
Argument
strong valid weak comparison

Assembly

Assembly
solutions

Association

Accuracy: Prediction accuracy in a medical test is the percentage of positive

Alternate An alternate explanation for an association can be provided by a

Apples+oranges See crude comparison or mixed-fruit comparison

Arbitrary Arbitrary evidence is evidence that is purely hypothetical or is

Argument: A valid argument is one where the conclusion must true given

Argument: A weak argument is one where the premises give weak support

Arithmetic Arithmetic comparisons compare two values by showing the
100% Sum Rule: If a margin value is a 100% sum, then the group is whole and each component is a part. P. 171

Confirmation accuracy in a medical test is the percentage of diseased cases that test positive; the percentage of disease-free that test negative. P. 278 outcomes that involve the disease (fraction of negatives that are disease free). P. 278 confounder but never by a mechanism. P. 55
Ambiguous means vague on essentials. P. 19
Anecdotal evidence involves a study or story about an individual or a small group based on limited experience. P. 72 weakly related to the argument. P. 26

A sound argument is one that is valid and has true premises. P. 105

A strong argument is one where the premises give strong support for the conclusion. 105 that the premises are true. P. 105
for the conclusion. P. 105 direction and size of the comparison. Arithmetic two-group comparisons are of four kinds: difference, times ratio, percent difference and times difference. P. 62

Assembly involves all the choices that influence a statistic and are not covered elsewhere under CARE. P. 32
Assembly solutions involve maturity and critical thinking: closereading, hypothetical thinking, estimating the impact and asking questions. P. 85

Association (statistical) is a quantitative connection between groups or characteristics. P. 16

Association: crude

Association: flimsy

Association: solid

Association words

Availability
bias
Average
Bar chart A bar chart is a chart that uses bar lengths or heights for the amounts. The bars can be vertical (column chart) or horizontal (row charts). The bars can be separated or touching. P. 116
Base part A base-part is a base in a comparison and a part in a part-whole ratio. P. 246

Base whole A base-whole is a base in a comparison and a whole in a partwhole ratio. P. 246

A Bayes comparison is a common-part ratio comparison in a group versus the entire population. It allows an exchange of the part with the test whole with no change in the numerical strength of the ratio comparison. P. 269
Between words Between words are words whose meanings are 'between' association and causation. They describe an association but suggest causation. P. 20

Bias

Big data

Causation
words
Cause A cause is an event or condition whose level or presence makes (or can make) a difference in something else. P. 18
Cases
attributable group that are attributable to being in the exposure group. P. 243

Centers rule Three centers rule: The three measures of center have a natural order in most skewed distributions. It is alphabetic in English: mean, median and mode if skewed left; mode, median and mean if skewed right. P. 124

Chance Chance is a possibility of something happening. P. 37
Chance Chance grammar describes part-whole ratios using the keywords grammar chance, risk, odds, probability and likelihood. P. 208
Cherry picking Selection bias: Selecting just those subjects or data that support your claim.
Clinical trial Randomized Controlled Trial (RCT) is a controlled experiment (trial) involving random assignment. Clinical trial is the most common equivalent. P. 73

Close reading Close reading involves seeing how the presence, choice or absence of a single word or phrase could have a big impact on the statistic or statistical association. Small changes in syntax can create big changes in semantics. P. 85
Coincidence Coincidence is a noteworthy connection between unlikely events with no obvious connection. P. 37
Columns, rows Columns run vertically like columns in a building. Rows run horizontally like rows of seats in a theater. P. 165
Common-part A common-part comparison compares two ratios having a comparison common part of two different wholes. P. 245

Common part A common-part exists when two part-whole ratios share the same part. P. 245
Comparison Comparison bias occurs when prior differences between the bias

Comparison: Mixed fruit comparison: a crude comparison of groups with mixed-fruit different mixtures of a related variable. Also known as an 'apples and oranges' comparison. P. 136
Comparison: Arithmetic comparisons compare two values by showing the arithmetic

Comparison:
ordered
Comparison
raw
Completion
bias direction and size of the comparison. P. 62

Ordered comparisons compare two values without mentioning their size or the size of the comparison. P. 60

Raw comparisons just present the values to be compared. P. 60

V1F

Component Components are cells within a group: a row, a column, or a range. P. 171
Confidence
interval

Confirmation
bias

Confounded Confounded means confused; confounding means confusing. P. 27

Confounder A confounder is a related variable that was not included in generating the association that provides an alternate explanation for an association. Technically a confounder is a third factor that causes the result in an association, and that is related to - but not caused by - the predictor. P. 28
Confusion of Confusion of the inverse is a grammatical error where two the inverse variables in a ratio are mistakenly exchanged without changing the number. P. 275. The confusion of the inverse exchanges part with whole in a part-whole ratio. P. 170
Context Context: the relevant circumstances: the reality. P. 11
Control of; 'Control of' is physical; to assign subjects to treatment or control
Control for

Control group The control group is the group not treated or exposed. P. 70
Controlled
study
Convenience
sample
Cornfield
condition \#1

Cornfield
condition \#2 predictor-confounder association is bigger than the original predictor-outcome association. E.g., the predictor- confounder (patients in poor condition) association is stronger than the hospital-death rate association. P. 312
Cross-sectional A cross-sectional study is an observational study that involves a
study single moment in time (unemployment rate) or over a time interval (death rate). P. 72

Crude comparison	Crude comparison: a comparison that conflates (fails to take into account) important related factors. Also known as a mixed-fruit comparison or an apples and oranges comparison. P. 30
Dashed lines	Dashed lines indicate an association. P. 28
Data: count	Count data counts how many things have a discrete quality: categorical (male vs. female), ordinal (disagree, neutral, agree) or quantitative (number of cars).P. 115
Data: measure	Measurement data measures quantities: characteristics that can have any value within some range. P. 115
Deductive reasoning	Deductive reasoning: reasoning where the conclusion must be true if the premises are true and the argument is valid. Often called formal reasoning. E.g., All men are mortal. Aristotle is a man. Therefore, Aristotle is mortal. P. 24
Determiners	Determiners are conditions that determine or delimit the size of the whole or part. P. 167
Diabolical denominator	Diabolical denominator: Changing the denominator can change the direction of an association between two ratios. P. 272
Discriminate	Discriminate (verb) is ambiguous: to discern a difference (good) or to judge with prejudice (bad). P. 21
Discrimination	Discrimination typically means to judge with prejudice. P. 21
Disparate impact	Disparate impact: an unintended disparity between groups resulting from group-neutral treatments. P. 21
Disparity	Disparity: a difference (lack of equality or parity) between groups. P. 21
Distinct-part comparison	A distinct-parts comparison compares two ratios involving two different parts of a common whole. P. 245
Distinct parts	Distinct parts exist when two part-whole ratios share the same whole. P. 245
Doing	Doing is when the researcher manipulates or nature intervenes while controlling the subject and the environment. P. 18
Double-blind study	A double-blind study blinds the researcher as well as the subject from knowing which group a subject is in, thereby eliminating bias for both. P. 100
Double-ratio comparisons	Double ratio comparisons are ratio comparisons of ratios. P. 248
Double-who ambiguity	This ambiguity occurs in percentage grammar when two relative pronouns follow percentage. P. 181

Effect Size	Effect size is the size of a two-group comparison (typically a times ratio) or the size of the slope in covariation. P. 79
Effectiveness	Effectiveness in preventing an outcome is one minus (the rate in the treatment group divided by the rate in the control group). P. 268
Error	Errors are systematic deviations from what is real or true. P. 42
Evidence	Evidence involves less-disputable claims that support the point of the argument. P. 51
Experiment	An experiment is a study involving a doing: subjects are given or assigned a treatment by a researcher or by nature. P. 18
Explanatory	The more important variable is the variable that has the higher explanatory power: the stronger association with the variable of interest. P. 300
power	The explanatory power rule: the more important of two binary predictors is typically the one having the greater effect size: the Eigger difference, times ratio or percentage difference in the
power rule	The halo effect is when the researcher's optimism influences the variable of interest. P. 300
data to support that optimism. P. 99	

V1F

Hawthorne effect

Histogram
hypothesis, research

Hypothetical
thinking
(assembly)

Hypothetical
thinking
(confounding)
Index values exclusive

Index values
exhaustive
Incidence Incidence (rate): a relative frequency: events per group size per unit time (2020 birth rate per 1,000 population). P. 199
Indexes Indexes are the words in a table that indicate the content of the rows or columns. 165

Inductive Inductive reasoning with statements: reasoning where the reasoning conclusion is likely - but not certain - to be true even if all the premises are true. Often called informal reasoning. E.g., All swans I have seen are white. Therefore, all swans are white. P. 24
Inverse ratio Inverse: a ratio in which the numerator and denominator are switched. In a part-whole ratio, the part and whole are switched. P. 275

Law of The Law of Averages holds that as sample sizes increase, the averages sample averages will approach the population average. P. 338
Law of very Law of Very Large Numbers. Qualitatively: The unlikely is large numbers almost certain given enough tries. Quantitatively: If an event has one chance in N and there are N tries, then one event is expected: the chance of at least one event is more likely than not. P. 92
Lift ratio
The Hawthorne effect is a systematic change in response when the subjects know they are the subject of attention. P. 98
A histogram is a bar chart where a bar spans an interval, so the bars can touch. P. 116
Research hypothesis: a claim involving a difference or change that the researcher hopes will be true in the larger population.. P. 325

Hypothetical thinking (assembly) is thinking about different ways that a statistic could have been created, compared, adjusted or presented. Hypothetical thinking is plausible 'maybe thinking'. P. 85

Hypothetical thinking involves identifying which confounders are plausible and estimating which are the biggest. P. 69

Index values can be exclusive (non-overlapping) or nonexclusive. Exclusive index values limit each subject to only one cell. Non-exclusive index values allow overlapping categories. P. 189

Index values can be exhaustive or non-exhaustive. Exhaustive index values cover all relevant values of the index variable. Nonexhaustive index values omit some relevant values. P. 191 See the Over-involvement ratio.

Line: Dashed	Dashed lines indicate an association. P. 28
Line: Solid	Solid lines with arrows represent causation. P. 28
Longitudinal study	A longitudinal study is an observational study that involves repeated measures: measurement of the outcome at two or more different times on the same or similar subjects. P. 72
Margin cells	Margin cells are cells at the edge of a table (top, bottom, left or right) that include part or all the table. P. 170
Margin values	Margin values are the values at the edge of a table (indicated by "All" or "Total") that include all the subjects in a column or row. P. 170
Margin values	Margin values are either sums or averages. A sum is always bigger than the biggest value it includes, and an average is always smaller. P. 170
Margin-value rule	Margin Value Rule: If a margin value is a sum, then each component of the group is a separate part. If not a sum (if an average), then each component of the group is a separate whole. P. 184
Margin of error	Margin of Error: A range either side of a sample statistic that includes the population statistic 95% of the time. P. 97
Mean	The mean or average is the sum of the values divided by their count. P. 122
Measurement bias	Measurement (researcher) bias is systematic error arising from bad measurements, bad questions or bad judgements. P. 43
Mechanism	A mechanism is the means by which the predictor causes the result. Technically, a mechanism is a third factor that is caused by the predictor and causes the result. P. 55
Median	The median of a distribution is the middle value in a sorted list if odd (the middle of the two center values if even). P. 122
Medical test	Medical tests are tests that involve subjects with one of two conditions, that return one of two outcomes (positive or negative), and that are calibrated by how well the test confirms the known presence and absence of the condition. P. 277
Mix Matching	Mix-matching changes the mix in one group by applying a standard mix and recalculating the weighted average. P. 139
Mixed-fruit comparison	Mixed fruit comparison: a crude comparison of groups with different mixtures of a related variable. Also known as an 'apples and oranges' comparison. P. 136

Mode	The mode is the value or category with the highest frequency. 123 A unimodal distribution has just one peak. A bimodal distribution has two peaks. P. 123		
Named Ratio	Named ratios are words that indicate the presence of a ratio: nouns such as rate, percentage or chance, or adverbs such as likely or prevalent in comparisons. P. 162		
Necessary	A necessary condition is one that must be satisfied before a result can occur. (If the result occurs, the necessary condition must have been true.) P. 153		
condition		\quad	Non-response
:---			
Non-response bias: an outcome that is influenced by the mix of			
bias			
subjects that do not participate. P. 99			

$\left.\begin{array}{ll}\text { Percentage } & \begin{array}{l}\text { Percentage points measure the difference between two } \\ \text { percentages. P. } 65\end{array} \\ \text { points }\end{array} \quad \begin{array}{l}\text { A percentile is the percentage of subjects who have scores at or } \\ \text { below a value. P. 119 }\end{array}\right]$

Random
assignment

Random
samples
Random Random sampling is more likely to yield a representative sample sampling: benefit and cost

Randomized trial

Randomness Randomness - pure chance - is the absence of any pattern that will help in predicting the next outcome. P. 37
Rank \quad Ranks (1st, 2nd, 3rd) measure the order or place of a value in a group of values with 1st being the best. P. 118

Rate A rate is a ratio that uses per to introduce the unit of measure. 199

Rates: Four Rates come in four kinds: frequency, prevalence, incidence and Kinds
Rate grammar: Clause rate grammar describes a rate using an entire clause: a clause-based verb separates the part and whole. P. 202
Rate grammar: Phrase rate grammar describes a rate using just phrases. P. 202 phrase-based

Rel. frequency A relative frequency distribution shows the percentage in each distribution group by the column height or row length. P. 116
Relative Relative pronouns (who, that and which as well as what, where or pronouns when) introduce relative clauses. P. 177
Relative risk Relative risk (RR): the risk of an outcome in an exposure group (Re) divided by the same risk in the control group (Rc) written as "the relative risk of <outcome> for <exposed> is Re/Rc". P. 268
Replication Repetition occurs when the experiment is repeated on the same subject in the same condition. P. 18
Representative Representative samples are samples in which the sample matches samples
Representative Representative samples take less time and money than random sampling: samples, but the sample statistic is not necessarily the best benefit

Random assignment: randomly assigning subjects to the treatment and non-treatment (control) groups - or randomly assigning the treatment and placebo to each subject. P. 73.
Random samples are samples in which some element of random selection or assignment was involved. P. 95. on unknown factors than any other non-random process and it allows one to make statistical inferences, but it requires more time and money. P. 95

Clinical trials are experiments involving random assignment. P. 73 growth. P. 199

A relative frequency distribution shows the percentage in each predictor of the population statistic and the margin of error is unknown. P. 95

Researcher bias
Researcher bias is a change in outcome due to a researcher's knowledge of who is in which group. P. 99
Reversal Reversal is where an association changes direction - a difference changes sign-after controlling for a confounder. P. 136
Safety effect A Safety Effect is an increase in risky behavior because the subject knows they have safer equipment. P. 98

Sample
Sampling bias Selection (sampling) bias is systematic error [in the outcome] due to a non-representative selection from a population. P. 43

Sample error Sample error is the actual difference between a sample statistic and the associated population statistic for a particular sample. P. 94
Sampling error Sampling error is the expected difference between a randomlysampled statistic and the associated population statistic. P. 95

Scientific A scientific experiment is an experiment that can be repeated. P. experiment 18
Simple test A simple medical test is one where the accuracy (the error) in confirming is the same for diseased and disease-free.. P. 279
Simpson's
Paradox

Single-blind
study

Solid lines
Specification

Spurious
association
Standard
deviation

Standardizing

Skewed A skewed distribution has one peak with one tail longer than the distribution other. A right-skewed distribution is pulled to the right with a longer right tail. P. 117
Simpson's paradox is when an association has one direction at the group level and the opposite direction in each subgroup. P. 137

A single-blind study uses a placebo to blind the subjects as to whether they are in the treatment or control group and eliminates the placebo effect. P. 100 Solid lines with arrows represent causation. P. 28
Specification applies an association in a group to a specific member of that group. 52
A spurious association is one that vanishes (no difference, no correlation) after controlling for another factor. P. 135

Standard deviation, the most common measure of spread, is related to the average variability of the data around the mean ignoring the sign. P. 156
Standardizing involves giving each group the same mixture of a confounder: either the mixture of the entire group or the mixture of one group chosen as the standard. P. 138

Statistical
Literacy

Statistically
significant
Statistics
Stereotype

Studies

Subgroup
margin of margin of error
Subject bias Subject (respondent) bias is when people lie or misremember in a systematic way. P. 43

Sufficient A sufficient condition is one such that the result must occur if the condition
Survey margin The survey margin of error is the maximum error expected for of error
Symmetric
distribution
Tables

Take CARE Take CARE is a good admonition in dealing with statistics. In this course, each letter stands for a kind of influence: C for
Confounding, A for Assembly or Assumptions, R for Randomness and E for Error/Bias. P. 14

Take into See Control For
account
Test and base In a two-group comparison, the test (T) is the value being compared; the base (B) is the basis of the comparison. P. 62

Test part A test-part is a test in a comparison and a part in a part-whole ratio. P. 246

Test whole A test-whole is a test in a comparison and a whole in a partwhole ratio. P. 246

Three-centers rule

Times-based ratios

Times-less comparison

Treatment group
Triangle diagrams

Uncontrolled study

Voter expectation
Voter intention
Weasel words average

If the election were tomorrow, who would you vote for? P. 329
Weasel words are words or phrases that suck the meaning out of a claim (just like weasels supposedly suck the yolk out of eggs). P. 42

Weighted Weighted average: weights the subgroup averages by their size.
Three centers rule: The three measures of center have a natural order in most skewed distributions. It is alphabetic in English: mean, median and mode if skewed left; mode, median and mean if skewed right. P. 124

Times-based ratios are comparisons that involve division: times ratio, percent difference and times more. P. 66
The new times-less comparison, T is (B / T) times less than B, is unambiguous provided both Test and Base are always positive. P. 66

The treatment group is the group in an experiment that is treated. P. 70

Triangle diagrams show the relationships between three related factors: a predictor, an outcome (result) and a related factor such as a confounder. P. 28

An uncontrolled study involves just a single group. P. 70

Who do you think will win the upcoming election? P. . 329 Arithmetically it first multiplies the average for each subgroup by the number in the subgroup, sums all these products and then divides the result by the total number in the group. P. 138
Index
100\%
column table 170
row table 170
total table 170
100% sum rule 172
A=Assembly 34
ABC association
not causation 23
ABC words. 20
association 21
between. 21
causation 20
accuracy
confirmation 279
prediction 279
alternate explanation 57
ambiguous words 20
anecdotal evidence 73
apples and oranges comparison 137
argument
sound. 106
strong 106
valid 106
weak 106
arithmetic comparison template 63
arithmetic comparison, kind of

1. simple difference 63
2. times ratio 63
3. percent difference 63
4. times difference 63
assembly 34
close reading 86
comparisons. 88
definitions 87
hypothetical thinking 87
solutions 86
association 17
crude 85, 106
dashed lines 30
definition 17
flimsy 106
graphical 19
V1F
1Confounding 29
2Assembly 34
3Randomness 39
4Error. 44
cases
percentage attributable 243
cases attributable 244
cases attributed
\#1 cases exposed 245
\#2 population ex 27
\#3 population 271
causation 19, 26
modals. 243
necessary 19
probabilistic 19
solid lines. 30
sufficient 19
words 20
center and skewness 125
centers rule 125
chance.. 39
evolution 338
chance grammar
clause template 210
phrase template 210
change, explain. 70
clause description rates. 207
clinical trial 73
close reading 86
coincidence 39
columns 166
common cause. 30
common-part compare
1 common part 247
2 test whole 247
3 base whole 247
common-part comparison 246
comparison
arithmetic 63
assembly 88
base indicators63
benefit of. 301
complements. 90
crude. 32
mixed-fruit 137
percentages 66
times-less 67
comparison bias. 100
comparison of ratios
common-part 246
distinct-part. 246
likely 258
comparisons, type of arithmetic 63
ordinal. 61
completion bias 100
components 172
confirmation accuracy 279
confirmation bias 100
confounded 29
confounder 30
confounder solutions 70
confounding
averages. 139
counts/totals 135
proportions. 291
confusion of the inverse 276
context
definition. 7
control
effect size. 80
study design 71
control for 83
control for, counts
increase or decrease 136
nullifies 136
reverse. 135
control of 83
controlled study 71
convenience sample 96
Covid death rates state compare 274
Crimes
gender 275 race. 275
cross-level inference 25
cross-sectional study 73
crude association 85
crude comparison 32
dashed lines 30

data distribution shape \qquad 117
definitions................................. 87
denominato
diabolical189, 273
missing........................256, 264
Denominator
missing.............................. 275
determiners 205
diabolical denominator............... 274
difference, explain...................... 70
distinct part comparison............. 246
distinct-part compare................ 247
1 test part 247
2 base part.......................... 247
3 common whole 247
distribution
percentile 121
distribution grammar................ 183
double blind............................. 101
drug effectiveness..................... 269
E = Error/Bias............................ 44
effect size................................. 80
evaluation 26
Event..................................... 189
idence
anecdotal.............................. 73
strength of............................ 27
evolution
chance 338
inheritance 338
exclusive................................ 189
experiment............................... 72
clinical trial........................... 73
doing 19
double blind......................... 101
quasi................................... 73
randomized 73
scientific 19, 73
single blind 101
explanation
alternate 57
explanatory power.................... 301
exposure rate 243
factor....................................... 17

diabolica 189, 273
Denominator
der 20difference,70
dist part comparion 246
1 test part
2473 common whole
distribution183
distribution grammardouble blind.101- Err
effect size. 80Evaaio8evidence
anecdotal. 73evolution
chance 338
exclusive.189
clinical trial 73
19double blind
73
randomized 73
single blind 101
alternate 57
exposure rate2
factor. 17
fallacy
base rate277, 279
prosecutors............................ 279
farther vs. further.......................... 65
frequency 200
frequency distribution 117
grammar
rate ... 205
grammar rules
likely comparison 257
short form comparison............ 255
graphs, ratio comparison
1 common parts 247
2 distinct-parts 247
3 common and distinct-parts .. 247
group... 172
growth rate................................... 200
half tables................................... 184
rates 203
two-way.........................187, 252
halo effect 100
Hawthorne effect 99
hypothetical thinking...............70, 87
incidence 200
inferences...................................... 54
inverse.. 276
journalistically significant........... 245
keywords
ABC keywords 20
association vs causation............ 20
law of averages 339
compensation 339
dilution.................................. 339
Law of Very Large Numbers 93
less vs. fewer 65
Lift ratio..................................... 270
likely .. 258
likely compare
common part.......................... 260
distinct part 260
likely comparison
common- part............................ 260
distinct-part........................... 261
lives saved attributable 270
longitudinal study73, 78
margin 333
margin value rule 185
margin values 172
mean .. 123
measurement bias
halo effect............................. 100
questions................................ 100
researcher.............................. 100
mechanism................................... 57
median 123
missing margin rule.................... 189
Missing-margin tables................ 189
mix matching
arithmetic.............................. 140
mixed-fruit comparison............... 137
modals 243
mode .. 124
more important variable.............. 301
movie study 73
multiple half tables...................... 186
necessary condition..................... 154
non-response bias....................... 100
non-response rate
phones.................................... 329
nullify .. 137
nullify or spurious association.... 136
observational study 72
ordered comparison of
ratios 213
Over-involvement ratio............... 270
part-whole percentage................. 167
part-whole ratios, comparison
1 common-part 247
2 distinct-parts 247
percent difference.......................... 63
percentage
part-whole.............................. 167
syntax.................................... 177
percentage diff. explained by...... 151
percentages - compare
two-way half tables 253
percentile 120
percentile score........................... 120
phrase description
rates....................................... 205
placebo effect99, 101
political polls 329
polls, political............................. 329
population..................................... 95
prediction accuracy 279
prediction versus confirmation ... 279
prediction vs. explanation 284
prevalence.................................. 200
prevalent 258
probabilistic causation................... 19
prosecutor's fallacy 279
quantitative data
three key properties 117
quasi experiment 73
question bias 100
quintile....................................... 122
R = Randomness 39
random sample 96
random samples
classification.......................... 332
evaluation.............................. 332
random sampling
classification.......................... 331
randomized experiment................. 73
randomness 39
rank .. 119
calculate 119
rate ... 200
rate grammar
clause 203
clause template 207
phrase.................................... 203
phrase template...................... 204
rates
1frequency 200
2prevalence............................ 200
3incidence............................. 200
4growth 200
clause description 207
common errors....................... 206
creating 202
kinds...................................... 200
not part-whole........................ 206
part-whole indicators.............. 205
phrase description................... 205
phrase-description 205

ratio

 confusion of the inverse 276 inverse.. 276
 ratio comparison graphic
1 common-parts 247
2 distinct-parts. 247
3 common and distinct-parts 247
ratio comparisons other. 66
ratio descriptions
grammar 212
regression.. 315
relative pronouns 177
relative risk 269
repetition. 20
representative sample95
researcher bias 100
respondent bias
Hawthorne effect 99
placebo effect 99
safety effect 99
reversal 137
reversal condition 153
rows. 166
safety effect bias. 99
sample. 95
convenience. 95
random. 96
representative.. 96
sampling bias vs. error 100
sampling error vs. bias 100
scientific experiment 73
Scientific experiment 19
selection bias 100
significant
journalistically 245
simple difference. 63
simple random sample 331
Simpson's Paradox 138, 290
Simpson's paradox 140
single blind 101
skewness
left vs. right. 119
rules for. 125
snapshot study 73
solid lines 30
solutions
assembly 86
effect size.80
spurious association.....136, 156, 29standardizing
averages 139
statistical generalization. 54
statistical literacy 9
statistical significance applicable 337
assembly 324
Bayesian inverse 327
bias. 325
confounding 322
flawed 320
influences. 322
Unlikely Alternate 328
statistics 13
math definition12
statistics contributions random sampling 96
status 189
stereotype.. 54
study
anecdotal 73
controlled. 71
cross-sectional 73
design. 71
longitudinal. 73, 78
movie 73
snapshot73
study design 71
sufficient condition 154
survey.. 333
margin of error 334
syntax
percentage. 177
table
100% columns 170
100% rows 170
100% total. 170
columns

\qquad 166
half... 184
missing margin 189
multiple half. 186
rows 166
two-way half. 188
Take CARE
confounding 29
mechanism.

\qquad
57taking into account.... See co
template, ratio comparisons
likely common- part 26
likely distinct-part 26260
percentage common-part... 254
percentage compare, common-
part. 254
percentage compare, distinct-parttemplate, ratio descriptions
chance clause grammar
chance phrase grammar... 210
percent grammar 168
percentage grammar 178
rate clause grammar 207
rate phrase grammar 204
arithmetic comparisons 63
ordered comparisons 62
templates, co-variation 69
test.. 63
test accuracy
confirmatio 279
prediction 279
test part 247
test whole. 247
three centers rule 125
times difference 63
times ratio 63
times-less
exception 67
new.. 67
triangle diagram 30
triangle diagrams 30
two-way half tables 188
uncontrolled study 71
variable. 17
Very Large Numbers, Law of 93
weighted average 139
weighted average line. 143
whole
inappropriate. 310
omitted.

Review of Named Ratios

1. 'Among' and 'per' always introduce a whole.
2. Leading prepositions introduce, determine or delimit a common whole.
3. In statements, a single relative clause after "percentage" always contains a part.
4. Modifiers (leading adjectives or trailing phrases/clauses) typically take on the status of whatever they modify. (Note: one exception in the prior Percentage rule)
"Percent" Grammar (P. 166). Determiners and modifiers can be added.

"\% of" present	"Among" absent	\#\% of $<$ whole $>$ are $<$ part $>$.
"\% of" absent	"Among" present	Among $<$ whole $>, \# \%$ are $<$ part $>$.
"\% of" present	"Among" present	Among $<$ whole $>, \# \%$ of $<$ whole $>$ are $<$ part $>$

E.g., In the U.S., among women, 25% are smokers (or " 25% smoke").

The main verb separates part and whole. The whole is on the same side of the main verb as the $\%$ symbol; the part is on the opposite side (or is the verb).
"Percentage" Grammar (P. 177). Other modifiers can be added.

$\begin{gathered} \text { "Percentage who*." } \\ \text { Among is absent } \\ \hline \end{gathered}$	The percentage of__	who* are	is __\%
	\{whole\}	\{part\}	. \#\#
"Percentage who*" is absent	Among _,	the percentage of	is __ \%
	\{whole\}	\{part	\#\#
$\text { "Percentage who*", } \begin{gathered} \text { of and among } \end{gathered}$	Among _, the	percentage of __ who* are __	is __ \%
	\{whole\}	\{whole\} \{part.	\#\#

* Other relative pronouns include that, which, what, when and where.

Rules for Decoding Tables of Ratios (Percentages or Rates)

Margin values are either sums or averages. A sum is always bigger than the biggest value it includes, and an average is always smaller. P. 170
100% Sum Rule: If a margin value is a 100% sum, then the group is whole and each component is a part. P 171
Margin Value Rule: If a margin value is a sum, then each component of the group is a separate part. If not a sum (if an average), then each component of the group is a separate whole. P. 184
Missing Margin Rule: If margins are missing and the index values are exclusive,

- they are wholes (unless they add to 100%). P. 188

Questions: Percent versus Percentage Grammar (P. 204).
What percentage of <whole> are <part>?
What is the percentage of $<$ whole $>$ who are $<$ part $>$?

Comparing two numbers. One is test (T), other is base (B).

1) Difference: \# = (T - B):
 is \qquad more/less+ than \qquad .
2) Times ratio: \# = (T/B): is times as much/many as $\frac{\text { ttest }}{}^{\text {is }}$ times as much/many as \{base\}
3) Percent difference: $\#=100(T-B) / B \quad$ is $\quad \ldots \%$ more $/$ less + than ___ 4) Times difference: $\#=(T-B) / B \quad \ldots \quad$ is __ times more/less+ than \{test $\}$
\{base\}
+: Difference comparisons allow "er" endings: greater, smaller, etc.
'Often' and 'frequently' can be used with the three ratio comparisons
COMPARING RATIOS: Common Part p. 245. [Distinct part: p. 245]
To delimit a common whole, leading phrases can be added before these templates. These templates show ratio and percent difference. Use templates above for others
"Percentage" Grammar, Long-Form Compare (P. 253)

The percentage of	that are	is	times as much as	the percentage of	that are
test whole	common part	$\# \#$	compare	base whole	common part

Percentage of gals who run is _times as much as the percentage of guys who run

The percentage of	among	is	$\%$ or times more than	the percentage of	among
common part	test whole	$\# \#$	compare	common part	base whole

Percentage of runners among gals is $\quad \%$ more than that percentage among guys
"Likely" Grammar Rules: Common part p. 257; [Distinct Part p. 260]
1 "among" always indicates a whole
2 "to" indicates a part. (Also, to be, to do, to have, etc.)
3 A part-whole compare must have at least 3 partwhole terms with at least one part and one whole
4 "as X is" or "than X is" means X is linked to the subject. Two linked terms have the same part-whole status.
5 "is likely to" without an object (e.g., is likely to occur or is likely to happen) indicates the subject is the part.

Common Part Compare: "Likely Among". Part as subject (P. 259)

is/are		times as likely	among/in___	as	among/in
common part	$\# \#$	compare	test whole	Indicate	base whole

In 2019 , U.S. $12^{\text {th }}$ graders were twice [two times] as likely to smoke as $8^{\text {th }}$ graders.
Common Part Compare: "Likely To". Whole as subject (P. 259)

is/are		$\%$ more/less likely	to	than	is/are
test whole	$\# \#$	compare	common part	indicate	base whole

[^8]
[^0]: ${ }^{1}$ Florence Nightingale (1820-1910)-the "Lady with the Lamp", the founder of modern nursing and the first female member of the Royal Statistical Society-used observational statistics to argue the need for nurses in the military. Dr. Jerome Cornfield, (1912-1979) - the creator of the Odds Ratio, Relative Risk and the Cornfield conditions, and a Fellow and President of the American Statistical Society-used observational statistics to argue that the association between smoking and cancer was "so great" that it cannot be due to any known confounder. Dr. Dennis Haack's 1979 textbook, "Statistical Literacy" was the first book to use that phrase. He argued that statistical literacy is more about words (doublespeak) than about mathematics. Victor Cohn (1920-2000)-a former Science editor for the Washington Post and author of News and Numbers-argued that students need to read the story behind the story when statistics are involved as evidence. Dr. Joel Best-Professor of Sociology and author of Damned Lies and Statistics and of More Damned Lies and Statistics - noted that "All statistics are social products, the results of people's efforts." He argued that understanding this fact is most essential in evaluating statistics as evidence in arguments. He also noted that "Statistics can become weapons in political struggles over social problems and social policy."

[^1]: ${ }^{2}$ Schmit, John (2010) Teaching Statistical Literacy as a Quantitative Rhetoric Course. Proceedings of Section on Statistical Education. www.statlit.org/pdf/2010SchmitASA.pdf

[^2]: ${ }^{3}$ Schield, Milo (2017). GAISE 2016 Promotes Statistical Literacy

[^3]: ${ }_{5}^{4} \mathrm{http}: / /$ www.statlit.org/Moore.htm
 ${ }^{5}$ Private communication (2001)
 ${ }^{6}$ http://www.statlit.org/pdf/2012-Carver-Presidents-Message-Statistical-Literacy.pdf
 ${ }^{7} \mathrm{htp}: / / \mathrm{www}$. statlit.org/pdf/2015-Kristof-NY-Times-0425.pdf
 ${ }^{8}$ http://www.statlit.org/pdf/2010Shaughnessy-StatisticsForAll-NCTM.pdf
 V1F

[^4]: ${ }^{72}$ Others. Ordered raw: Male height (69 ") is greater than female height (65 "). Arithmetic raw: Male height ($69^{\prime \prime}$) is 4 " more than female height ($65^{\prime \prime}$). Raw obscures the comparison.

[^5]: ${ }^{151}$ Assumes 30 days for each month. www.statlit.org/Excel/2012Schield-Bday.xls V1F

[^6]: ${ }^{192}$ www.statlit.org/pdf/2000SchieldASA.pdf
 ${ }^{193}$ Allan Tarp (2000) introduced the 'per' ratios. ICME-9. Tokyo.
 V1F

[^7]: ${ }^{325}$ Schield named ASA Fellow: www.StatLit.org/pdf/2018-Schield-ASA-Fellow.pdf

[^8]: E.g., In 2000, women were 25% more likely to smoke than [were] men

