Statistical Literacy: Coincidence

MILO SCHIELD,

Augsburg College

Director, W. M. Keck Statistical Literacy Project US Rep, International Statistical Literacy Project Member, International Statistical Institute

National Numeracy Network Workshop Oct 11, 2014. www.StatLit.org/pdf/2014-Schield-NNN1-Slides.pdf

Law of Very-Large Numbers

Not the same as Law of Large Numbers!!!

Unlikely is almost certain given enough tries.

Given an event: one chance in N. In N tries, one event is 'expected';

* More likely than not. Schield (2012)

Richard von Mises (1938)
In a group of 28 people,
a birthday match is *expected*.
The trick is to show it.

The trick is to show it,
- not just to prove

Try this Excel den

www.StatLit.org/Excel/2012Schield-Bday.xls

The "Birthday" Problem Math Answer

If the chance of an rare event is p and p = 1/k, then this event is "expected" in k trials.

In a group of size N, there are (N-1)(N/2) pairs.

Solve for N(k). $k = (N-1)(N/2) = (N^2-N)/2$

Quadratic: $N^2 - N - 2k = 0$

Estimate: $N^2 \sim 2/p$.

Trial and error: $27^2 \sim 2*364$

Q. Are students convinced? No!!!

2014 Coincidence NW11										7	
		49	Co	nne	ctio	ons	Q	uad	rant 2		
Schield (2011)			RICHARD VON MISES' BIRTHDAY PROBLEM							28 People	
		Month	8	12	7	11	6	4	2		
		Day	28	2	15	15	5	24	2		
Month	Day									Month	Day
10	8									2	5
5	17									2	17
9	13									12	26
11	18									3	6
12	21							2		4	20
2	28									10	2
10	11									3	23
		Month	10	7	4	12	8	4	8		
		Day	22	22	10	6	4	20	21		

2014-Schield-NNN1-Slides.pdf

Consider a run of 10 heads?
What is the chance of that?

Question is ambiguous! Doesn't state context!

1. Chance of 10 heads on the next 10 flips?
p = 1/2; k = 10.
P = p^k = (1/2)^10 = one chance in 1,024

2. What is the chance of *at least* one set of 10 heads [somewhere] when flipping 1,024 sets of 10 coins each? At least 50%.*

* Schield (2012)

Runs in Flipping a Fair Coin

1) Unlikely is expected given enough tries.
2) Unlikely (1 chance in k) is *expected* in k tries

Run of 6 is expected in 64 tries: 2^6 = 64.

Run of 7 is expected in 128 tries: 2^7 = 128

Run of 8 is expected in 256 tries: 2^8 = 256

k tries = k flips of a coin

Michael Blastland's The Tiger that Isn't

With rice scattered in two dimensions, people can often see memorable shapes.

After this webinar, check out this Excel scattered-rice demo with 1 chance in 100 per cell:

www.StatLit.org/Excel/2012Schield-Rice.xls

