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Unconditional Independence: First let�s consider whether a variable A is d-separated (indepen-

dent) of a variable B on a DAG unconditionally. They are independent if there is no unblocked (active)

path between them down which probability can �ow. To determine this, de�ne a path as follows. Take

your graph, mentally erase (for the moment only) all arrowheads. So the graph now just has edges (arcs)

between nodes (variables). A path between A and B is any sequence of nodes all connected by arcs to

get you from A to B. The path is blocked if (now with arrows returned) there is a collider on the path.

[ A variable C is a collider on a path if the arcs on the path that meet at C both have arrows pointing at

C.] If a path is not blocked, we say it is unblocked, active, or open, all of which are synonymous.

Then (A
`
B)G if and only if every path from A to B is blocked. If even one path is unblocked, we

write (A 6 qB)G.

We say two variables (A1; A2) are d-separated from two other variables (B1; B2), i.e., ((A1; A2)
`
(B1; B2))G

if and only if all paths between any variable Aj and any variable B` are blocked. That is, you simply

test d-separation between each variable in the second group and each variable in the �rst group. If there

are two variables in the �rst group and two in the last group, you have to do four separate checks of

d-separation.

Conditional independence: We say two variables A and B are d-separated given (or by) a set of

variables Z = (Z1; : : : ; Zk) if all paths between A and B are blocked where, when we can condition on Z,

a path between A and B is blocked if (i) there is any variable Zm 2 Z on the path that is not a collider

or (ii) there is a collider on the path such that neither the collider itself nor any of its descendants are in

Z. Generalizing this idea to d-separation of (A1; A2) from (B1; B2) given Z is just as above. That is, we

check that each variable in the �rst set is d-separated from each variable in the second set conditional on

Z.

Statistical interpretation of d-separation: As we have seen, a DAG represents a statistical

model. That is, it represents a set of distributions whose density can be factorized as the product of the

probability of each variable given its parents. Suppose we wish to know whether, for all distributions

in the model (i.e., all distributions represented by our DAG), whether A
`
B j Z. The answer to this

question is A
`
B j Z for all distributions represented by the model if and only if A is d-separated from

B by variables Z, i.e., (A
`
B j Z)G.

Suppose now that A is not d-separated from B given Z on the graph. Then there exists at least one

distribution, represented by the DAG, for which A and B are dependent given Z. [ Note that there may

be other distributions in the model (represented by the DAG) for which A and B are independent given

Z.] For example, if Z is the empty set and our DAG is simply A! B, then clearly A is not d-separated



from B; yet distributions in which A is independent of B are represented by our DAG since our DAG is

complete (all arrows are present), and thus the DAG represents all distributions for (A;B).

The G-computation algorithm formula: Given a DAG G with variables (A;B;C;D; : : : ; Z),

suppose the DAG is complete and the ordering of the DAG is alphabetical, that is, the arrow between

two variables has its head pointing at the variable later in the alphabet. Suppose we want to �gure out the

density of all the uncontrolled variables in a hypothetical study where we intervene and set variables C, O,

and X to c,o, x. The joint density of all the other variables in this hypothetical study is derived as follows.

Write the joint density of all the observed variables on the graph using the usual DAG factorization, i.e.,

the product over the 26 variables of f (variable j parent). [ Note Z has 25 parents while A has no parents.]

Next remove from this product the terms corresponding to the densities of the set (manipulated) variables

given their parents. That is, f (c j parents C) ; f (o j parents O) ; f (x j parents X). Finally, be sure that

in the remaining terms, the value you have for the variables O, C, and X are the values you set these

variables to. Finally, to get the marginal distribution of any single variable, say, Y in the study where

you have intervened and set C, O, and X to particular values C, O, X of interest, you take the previous

joint density and sum out (integrate out) all the remaining 22 variables [ i.e., all variables but Y and the

variables O, C, and X that you have set ]. Note the G-computation algorithm formula is de�ned in terms

of the distribution of the observed variables that you actually see in your study and can in principle be

consistently estimated (by counting) in a su¢ ciently large study. The formula has the distribution you

would see if you intervene and set C, O, and X to particular values of interest if the original DAG is

a causal DAG � i.e., there are no other unmeasured confounders in the world that you need to worry

about. Of course, in an observational study, you don�t know whether this is true. In a randomized study

(where there was physical randomization), you should know whether this was true because you know

which variables were used to assign the treatments C, O, and X.
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Figure 1: (a) A causal DAG representing two unconfounded variables; (b)
A causal DAG representing the presence of confounding.

• Alternatively one can simply view our model as the highest (least
restrictive) level in a hierarchy of counterfactual models that cannot
be distinguished from one another by any experimental intervention.

It is important to emphasize that although we will not use the consistency
assumption in our development, our theory is entirely logically compatible
with its adoption should a user wish to do so.3

In the next section we give motivating examples, followed by an outline
of the rest of the paper.

2 Motivating Examples

To motivate our development we first consider the simple graphs, shown in
Figure 1. The nodes represent random variables and the graph represents a
factorization of their joint density. Specifically, the DAG in Figure 1(a) is
associated with the (trivial) factorization:

p(x, y) = p(x)p(y | x) (1)

where the densities on the RHS are associated, respectively, with X and Y

in the DAG.
DAGs are often given a causal interpretation. In that case the DAG

in Figure 1(a) is interpreted as representing the fact that the effect of X

3
Indeed, the lack of experimental testability of consistency may be turned from a ‘bug’

to a ‘feature’ by employing a ‘coupling argument’ that temporarily adopts this assumption,

safe in the knowledge that any subsequent results identifying experimental intervention

distributions must hold regardless of the assumption, since otherwise we would have an

empirical test of its validity; see Robins et al. (2007). Similar remarks apply to e.g. the

assumption of rank preservation.
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X x = 0 Y (x = 0)

(a)

X x = 1 Y (x = 1)

(b)

Figure 2: The graphs resulting from splitting node X in the graph in Figure
1(a), and intervening to set a particular value. (a) setting X to 0; (b) setting
X to 1.

on Y is unconfounded. Within the potential outcomes4 (or counterfactual)
literature the absence of confounding is understood as implying (at least)
the ‘weak ignorability’ conditions:

X⊥⊥Y (x = 0) and X⊥⊥Y (x = 1), (2)

where we have supposed that X is a binary treatment variable, and that
the potential outcomes Y (x = 0) and Y (x = 1) are well-defined. Here, for
example Y (x = 0) denotes the value of Y had, possibly contrary to fact, X
been set to 0. One of the primary uses of graphs, including DAGs, is to rep-
resent the conditional independence (or Markov) structure of a multivariate
distribution via d-separation (see Appendix A). Since (2) is an independence
statement, one might naively think that this could be read directly from the
graph in Figure 1(a). However, the absence of the variables Y (x = 0) and
Y (x = 1) in the DAG in Figure 1(a) would appear to present a significant
obstacle to reading the independencies (2) from this graph (!)

In the approach described here, we will introduce a simple ‘node split-
ting’ operation, which when applied to vertex X in the DAG in Figure 1(a)
results in the graphs in Figure 2, depending on whether the hypothetical
intervention sets X to 0, which gives Figure 2(a), or sets X to 1 which gives
Figure 2(b). Notice that in addition to splitting the X node, the node cor-
responding to Y in the original DAG has been relabelled to indicate that it
is now a potential outcome.

4
Readers who are more familiar with the notation P (Y = y | do(X = x)) to indicate

an intervention distribution, may translate this into potential outcomes as P (Y (x) = y).
However, the language of potential outcomes is richer. For example, there is no direct

way to express P (Y (x)= y |X =x�
) in terms of the do(·); though see §12 for an indirect

approach.
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X x Y (x)

Figure 3: A template representing the two graphs in Figure 2.

X x Y (x)

H

Figure 4: The template resulting from intervening on X in the graph in
Figure 1(b).

Since the templates we introduce here represent counterfactual variables
from a single set of interventions, we will refer to them as ‘Single world
Counterfactual Templates’ or ‘SCoTs’.7

In Figure 4 we show the template representing the graphs resulting from
intervening onX in the graph in Figure 1(b), which intuitively represents the
presence of confounding. In the potential outcomes literature, confounding
is expressed as non-independence of Y (x̃) and X for some x̃. This lack
of independence is consistent with Y (x) and X being d-connected in the
template shown in Figure 4 by the path X ← H → Y (x).

Lastly Figure 5(a) shows a DAG in which L is observed, and is sufficient
to control confounding between X and Y . From the template in Figure 5(b)
we see that X⊥⊥Y (x̃) | L, sometimes referred to as conditional ignorability,
holds. It may be shown8 that this condition is necessary and sufficient for
the effect of X on Y to be given via the standard adjustment formula:

P (Y (x̃)=y) =
�

l

P (Y =y | L= l,X= x̃)P (L= l). (4)

other variables appear on the graph. In other words, CADMGs are not templates.
7
The acronym is intended as an oblique reference to Hume (1748), who linked coun-

terfactuals and causal relations.
8
This is a special case of Theorem 14 in Section 7.

8
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X Y

L

(a)

X x Y (x)

L

(b)

X Y

L

(c)

Figure 5: Adjusting for confounding. (a) The original causal graph. (b) The
template G(x), which shows that Y (x)⊥⊥X | L. (c) The DAG GX obtained
by removing edges from X advocated in Pearl (1995, 2000, 2009) to check
his ‘backdoor condition’.

Two further examples of graphs which imply X⊥⊥Y (x̃) | L are shown in
Figure 6; in these graphs H represents a hidden variable.

Notice that here we are able to use the graph G(x̃) to represent the
distribution P (Y (x̃), X, L) in the general case where X has an effect on Y .
We contrast this line of graphical reasoning with that advocated in (Pearl,
2000, 2009, p.87) in which d-separation of X and Y given L is checked in the
graph GX obtained by removing the edges that are directed out of X; see
Figure 5(c). Though this graphical criterion is equivalent to ours, so that
X is d-separated from Y given L in GX if and only if X is d-separated from
Y (x̃) given L in G(x̃), so validity of his criterion is not at issue, the graph
GX only appears represents the null hypothesis that X does not causally
affect Y . It is only under this null hypothesis that X⊥⊥Y | L, corresponding
to the d-separation of X and Y given L that holds in Figure 5(c). Thus the
graph GX does not appear to offer an explanation as to why d-separation of
X and Y given L should ensure that (4) holds when X has an effect on Y

(even though it does).
Furthermore, in the general case where we are considering whether we

may use the natural extension of (4) to a set of variables L:

P (Y (x̃)=y) =
�

l

P (Y =y | L= l, X= x̃)P (L= l). (5)

The backdoor criterion (Pearl, 2000, 2009, p.79) requires that in addition
to X and Y being d-separated given L in GX , no variable in L may be
a descendant of X. This additional condition appears inexplicable, since

9



X Y

L

H

(a-i)

X x Y (x)

L

H

(a-ii)

X Y

L

H

(b-i)

X x Y (x)

L

H

(b-ii)

Figure 6: Further examples of adjusting for confounding. (a-i) A graph G;
(a-ii) the template G(x); (b-i) A graph G�; (b-ii) the template G�(x). H is
an unobserved variable in G and G�. Both SCoTs imply Y (x)⊥⊥X | L.

the inclusion of such a variable does not preclude that X and Y may be
d-separated in GX .9 For example consider the DAG and corresponding GX

shown in Figure 13(a) and (c). As we will see, within the framework given
here there is no need to state this additional restriction: if some L

� ∈ L is
a descendant of X in G then the graph G(x̃) will not imply that X⊥⊥Y (x̃) |
{L ∈ L}. See Section 6 below.

We now give a brief overview of the development in the remainder of the
paper:

Our starting point will be a set of ‘factual’ variables V and a DAG
G (with node set V). The statistical model associated with G consists of
all joint distributions P (V) of the factuals that factor with respect to G.
Suppose now we are given a set of treatment variables A ⊆ V; we will
let V(ã) represent the set of counterfactual variables (corresponding to the
actual variables V) associated with a hypothetical intervention setting A to
ã. In Section 3 we give a general transformation algorithm that, given G
and an assignment ã to A as input constructs a new graph G(ã) with the
counterfactuals V(ã) as nodes. Given a different assignment a† to A, our
algorithm will generate a graph G(a†) with a different node set V(a†). We
may represent the collection of all such graphs via a template G(a), which

9
(Pearl, 2009, §11.3.3, p.344) acknowledges that the need to restrict to non-descendants

is not transparent in his original derivation, and offers an alternative. However, this

reformulation requires two different independence relations to be checked.

10
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(1) Split Nodes: For every A ∈ A split the node into a random and fixed
component, labelled A and a respectively, as follows:

A

· · ·

· · ·

⇒ A

a

Splitting: Schematic Illustrating the Splitting of Node A

Thus the random half inherits all edges directed into A in G; the fixed
half inherits all edges directed out of A.

Let the resulting graph be G∗. For each random vertex V in G∗, let
a∩V denote the subset of fixed vertices that are ancestors of V in G∗.

(2) Labeling: For every random node V in G∗, label it with V (a∩V ) (see
the schematic below).

It is implicit here that if a∩V = ∅ then V (a∩V ) = V . The resulting
graph is the minimal SCoT. Let V(a) ≡ {V (aV ) | V ∈ V} be the set
of random vertices in G(a).

By construction the minimal SCoT is unique. ‘Non-minimal’ SCoTs may
be formed from the minimal SCoT via the following operation:

(3) Extending node labels: For each vertex V (a∩V ), the set a∩V may be
replaced by any set aV such that a∩V ⊆ aV ⊆ a \ {v}.
Thus we are free to replace the set a∩V by any subset aV of the fixed
nodes provided that it is a superset of a∩V and does not contain v itself
(if V ∈ A).11

Note that by convention will use aV to denote a generic set of fixed nodes
labelling the counterfactual node corresponding to V in a possibly non-
minimal SCoT, while a∩V denotes specifically the set of fixed nodes that are
ancestors of the counterfactual node corresponding to V ; by definition, in a
minimal SCoT every node takes the form V (a∩V ).

11
This is the rationale for the notation a∩

V , since this set is the intersection of the sets

aV arising in non-minimal SCoTs.
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a ⇒
A

⇒
B C

D

FE

X

T

Y

Z

· · ·

· · ·

· · ·

· · ·

a

A(. . .)

B(a, . . .)
C(a, . . .)

D(a, . . .)

F (a, . . .)E(a, . . .)

X(. . .)

T (. . .)

Y (. . .)

Z(. . .)

· · ·

· · ·

· · ·

· · ·
Labelling: Schematic showing the nodes V (aV ) in G(a) for which a ∈ a∩V

An instantiation G(ã) of G(a) results from choosing a specific assignment
of values ã for the ‘free variables’ a in G(a), and appropriately replacing each
occurence of ai with ãi within the label for a vertex. Let A denote the set
of all possible instantiations of a. Formally a template G(a) may be viewed
as a graph valued function defined on the domain A. From this perspective
ã represents a specific input, and G(ã) the corresponding specific output.

3.2 Examples of minimal SCoTs

We illustrate the construction of minimal templates via three examples in
Figure 7, a complete DAG corresponding to the situation where M ‘medi-
ates’ the effect of a treatment Z on a response Y , and there is no confound-
ing, and three in Figure 8, where we further assume that there is ‘no direct
effect’ of Z on Y . (We formalize the notions of no direct effect below in
§5.2.)

The subsets of a labelling each vertex are summarized in Table 1. Note
that in the templates in Figure 7, since Y is a descendant (in fact, child)
of both Z and M in all three graphs, Y is labelled with all variables that
are intervened on, so in each case a∩Y = a. In contrast in template (iv) in
Figure 8, where both Z and M are intervened on, so a = {z,m}, we have
a∩Y = {m} since after splitting M , Y is no longer a descendant of Z.

14
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M YZ(i)

M(z)Z(ii) z Y (z)

Z(iii) M m Y (m)

Y (z,m)M(z) mZ(iv) z

Figure 7: (i) A DAG G with treatment (Z), mediator (M) and response (Y )
in the absence of confounding. minimal templates: (ii) G(z); (iii) G(m); (iv)
G(m, z).

a Figure 7 Figure 8

(ii) {z} a∩Z=∅; a∩M =a∩Y ={z} a∩Z=∅; a∩M =a∩Y ={z}
(iii) {m} a∩Z=a∩M =∅; a∩Y ={m} a∩Z=a∩M =∅; a∩Y ={m}
(iv) {z,m} a∩Z=∅; a∩M ={z}; a∩Y ={z,m} a∩Z=∅; a∩M ={z}; a∩Y ={m}

Table 1: The sets labelling nodes in the minimal SCoTs in Figures 7 and 8.
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M YZ(i)

M(z)Z(ii) z Y (z)

Z(iii) M m Y (m)

Y (m)M(z) mZ(iv) z

Figure 8: (i) The DAG G from Figure 7 under the additional assumption that
there is no direct effect of treatment (Z) on the response (Y ). Templates:
(ii) G(z); (iii) G(m); (iv) G(z,m).

3.3 Examples of non-minimal SCoTs

In Figure 9 we show two examples of non-minimal templates. The template
in Figure 9(a) is a non-minimal template G�(m) formed from the (minimal)
SCoT G(m) in Figure 7(iii) by extending a∩Z = ∅ to aZ = {m}, or equiva-
lently replacing Z by Z(m). The non-minimal template G(z,m)� in Figure
9(b) is formed from the (minimal) SCoT G(z,m) in Figure 8(iv) by extend-
ing a∩Y = {m} to aY = {m, z}. Another non-minimal template could be
formed by further replacing Z by Z(m) in this template.

3.4 Graphical Properties of SCoTs

The next three Propositions follow immediately from the construction pro-
cedure.

Proposition 1. In G(a), every node Y (aY ) that is a descendant of a fixed

16
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Z(m)(a) M m Y (m)

Y (z,m)M(z) mZ(b) z

Figure 9: Non-minimal SCoTs: (a) A template G�(m) formed from the
minimal SCoT G(m) in Figure 7(iii) by adding m to Z; A template (b)
G�(z,m) is formed from G(z,m) in Figure 8(iv) by adding z to Y (m).

Proof: Immediate by the definition of a∩V since any fixed vertex that is an
ancestor of X(a∩X) in G(a) is also an ancestor of Y (a∩Y ). ✷

Proposition 7. In G, let Ai be the vertex in G corresponding to a fixed node
ai ∈ a∩V , the set labelling V (a∩V ) in the minimal SCoT G(a). Then Ai is an
ancestor of V in G; further, there is a directed path from Ai to V on which
no other vertex is in A.

Proof: If ai ∈ a∩V then there is a directed path from ai to V in G∗, the
graph resulting from the node splitting step. Since this directed path is still
present in G∗, it was also present in G, and no node on that path is in A,
since otherwise the directed path would not be present in G∗. ✷

3.6 Which interventions are well-defined

Although in §3 we define the transformation from DAG to a SCoT, G �→
G(a), for an arbitrary set of variables A, in any given substantive context, it
would only be of interest to consider sets A for which the interventions, and
hence the resulting counterfactuals are well-defined in the sense that there
is general agreement on the meaning of the intervention. This distinguishes
our theory from those based on NPSEMs and related models that require
interventions on all variables to be well-defined. However, we note in passing
that in the case where we are unable to intervene on all variables then
two different DAGs may lead to equivalent sets of distributions over the
factuals and the potential outcomes; this generalizes the notion of Markov
equivalence that exists for ordinary (non-counterfactual) DAG models.

18



A0 L A1 Y

(i)

A0

a0

L(a0)
A1(a0)

a1

Y (a0, a1)

(ii)

Figure 10: (i) (i) A complete DAG G; (ii) the template G(a0, a1).

Proof: Suppose Ai(ãAi) is the random variable corresponding in G(ã) to
some Ai ∈ A in G. By the construction of G(ã), Ai(ãAi) has no children in
G(ã), hence may be marginalized without affecting any other terms in the
factorization. ✷

For the purposes of this paper we can and do take Equations (6) and
(14) as the primitives that define our counterfactual model However (6) and
(14) need not be taken as primitives. Specifically in Section 9 we show that
(6) and (14) are implied by the RCISTG model of Robins (1986) under the
assumptions of consistency.

The RCISTG model may also be represented as a non-parametric struc-
tural equation model (NPSEM) with dependent errors. This dependence is
required if we wish to avoid making untestable independence assumptions;
see §9 below for further details.

In contrast, Pearl (2000, Ch. 7) associates with a DAG an NPSEM
model with Independent Errors (NPSEM-IE).13 The NPSEM-IE model is
a submodel of the FFRCISTG associated with the same graph, and thus
also implies (6) and (14). However, as discussed in detail in Section 13,
an NPSEM-IE, in contrast with all other models considered in this paper,
implies many additional untestable restrictions on the counterfactual distri-
bution.

13
In Robins and Richardson (2011) the acronym ‘NPSEM’ was used to refer to what is

here termed an NPSEM-IE. Since at least one reader of Robins and Richardson (2011) er-

roneously concluded that FFRCISTGs could not be represented as a system of structural

equations, we have opted to change nomenclature (citations withheld to spare embarrass-

ment).
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A0 L A1 Y

H

(i)

A0

a0
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Figure 11: (i) (i) A DAG G describing a sequentially randomized trial; (ii)
the template G(a0, a1).

5.4 Completeness of the Markov property for G(ã)

We have seen in Theorem 8 that for any distribution P (V(ã)) that factorizes
according to a graph G(ã), d-separation (with ã in the conditioning set)
implies conditional independence. The following provides a converse.

Theorem 13. If B(ã) and C(ã) are d-connected given D(ã) ∪ ã in G(ã),
then there exist distributions P (V) and P (V(ã)) that obey modularity and
factorize according to G and G(ã) respectively, such that

B(ã) �⊥⊥C(ã) | D(ã) [P (V(ã))].

Proof: It follows directly from the corresponding results for DAGs (Geiger
and Pearl, 1993; Meek, 1995, see) that we may construct a distribution
P (V(ã)) in which the independence corresponding to the d-connection does
not hold. Under modularity this distribution P (V(ã)) is a partial specifica-
tion of the conditional densities in the original DAG G. We are then free to
choose the remaining pieces of the conditional densities, to specify P (V), to
build a distribution factorizing according to G. ✷

We note briefly that the corresponding result does not hold for ‘twin
networks’ Pearl (2000, 2009), nor for ‘counterfactual graphs’ Shpitser and
Pearl (2007), as these involve variables that are deterministically related;
see §10.
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Figure 12: (i) A DAG G in which initial treatment is confounded, while the
second treatment is sequentially randomized; (ii) the SCoT G(a0, a1). L is
known to have no direct effect on Y , except indirectly via the effect on A1

6 A simplified criterion for adjustment

With our new tools in hand we may formulate a simple adjustment criterion
as follows:

Counterfactual Adjustment Criterion
If X⊥⊥Y (x̃) | L is implied by the graph G(x̃), then

P (Y (x̃)=y) =
�

l

P (Y =y | L= l, X= x̃)P (L= l).

Notice that we have no need of any restrictions on the membership in L as is
the case with the formulation of the backdoor criterion (Pearl, 2000, p.70).
The reason why may is illustrated in Figure 13. In the causal graph shown
in Figure 13 (a), L1 is necessary and sufficient to control confounding, but
{L1, L2} is not. It may be seen directly from inspecting the template in
Figure 13(b) that

X⊥⊥Y (x̃) | L1, X⊥⊥Y (x̃) | L1, L2(x̃)

but the template does not imply X⊥⊥Y (x̃) | L1, L2. Moreover, this indepen-
dence is not implied by any template The inclusion of Y (x̃) implies that the
node X must be split, but as soon as X is split, then L2 is replaced with
L2(x̃); see Section 10 below for further discussion.

In contrast under the non-counterfactual formulation of the back-door
criterion (Pearl, 2000, 2009, p.78), in which the graph GX is formed as
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Sticky Note
Construction of SWIG:Topological order left to right by conventionSplit any treatment node. Here A0,A1Red half: Labbelled by the nonrandom fixed value treatment is set to Left half: RandomLeft Half Inherits all arrows into X; no arrows out.Red half: Inherits all arrows out of X; no arrows in. Variables down stream labelled as counterfactuals by the treatments that have directly affected them (ie that are ancestors on the SWIG)Assumption on SWIG representing causal graphThe node variables factor according to the graph:The distribution of the nodes (counterfactuals) are linked to the distribution of the factuals by modularity on term in  Swig factorization
    ⋅Replace counterfactuals by their associated factuals:  
    ⋅Then add the "treatment" parents of the left hand side counterfactual to the RHS:
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In the dynamic regime 
A1 is not independent of Y(g) 
in the SWIG corresponding to the regime
Assign A1 from some distribution
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Figure 13: Simplification of the backdoor criterion. (a) The original causal
graph G. (b) The template G(x), which shows that Y (x)⊥⊥X | L1, but does
not imply Y (x)⊥⊥X | {L1, L2}. (c) The DAG GX obtained by removing
edges from X advocated in Pearl (2000, 2009).

in Figure 13(c) an additional condition must be added, requiring that no
member of L is a descendant of X. This extra condition is required because,
as noted earlier, GX represents the null hypothesis of no effect of X on Y :
note that if we were to construct an instantiated template GX(ã) from GX

then that it would imply X⊥⊥Y (x̃) | L1, L2.

7 Introduction to the g-formula

Given a causal DAG G, interest often focuses on the distribution of a final
response (Y ) under a sequence of interventions that assign specific values to
earlier variables, e.g. A0 and A1, i.e. P (Y (a0, a1). We illustrate the simplest
such situation in Figure 10(i) where the joint effect of A0 and A1 on L and
Y is identified. The marginal distribution of Y (a0, a1) is given by:

P (Y (a0, a1)=y) =
�

l

P (L(a0)= l, Y (a0, a1)=y)

=
�

l

P (L= l | A0=a0)P (Y =y | A0=a0, L= l, A1=a1).

(20)

where the second equality follows by Corollary 12.
A key insight in Robins (1986) was the observation that the same for-

mula (20) could be applied in situations in which there are unmeasured
confounding variables. Consider, for example, the graph shown in Figure
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Sticky Note
From the SWIG we see that 

    Y(x₀,x₁)∐X₁(x₀)|Z(x₀),X₀ and  Y(x₀,x₁ ind X_0 so the distribution of  Y(x₀,x_1) identified by the g-formula
Thus 
    Y(x₀,x₁)∐X₁(x₀)|Z(x₀),X₀=x₀
Thus 
    Y(x₀,x₁)∐X₁|Z,X₀=x₀
Pearl claimed this last was not true and concluded that a necessary and sufficient condition i had given for identification of the g-formula was wrong
    
How did he come to this incorrect conclusion
Yet as one can see using SWIGs 
He correctly concluded that Y(x₀,x₁)~∐X₁|Z,X₀ was false but he then claimed  the context specific independence was false as well
He used his method the so-called twin network method.
It is so hard and complicated to use correctly that he has made errors here and elsewhere although he was a coauthor of the method.

The reason I believe is that the method has deterministic relations and it has a great deal of trouble dealing with context specific independence
SWIGs immunize against such errors
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