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Fusion and causal analysis in big marketing data sets  
 

Abstract 
Since so many marketing studies reflect differing aspects of consumer behavior,  

there is today a critical need for data fusion. But fusion can be challenging, especially 
when we are talking about fusing thousands of variables. In this article, we present an 
approach which solves this problem in a highly efficient manner. Another  problem is in 
applying causal types of models (as opposed to traditional statistical ones) for the 
analysis of complex marketing data. A new, intrinsic probabilities, approach is proposed 
and compared with others. 

 
1. Fusion in big data sets 

The purpose of ascription (fusion) is to merge information of two datasets into one, in 
a such a way, that external criteria are satisfied. 

Let assume we have two data sets: A, the source of information to be ascribed 
(source) and B (hub), with different numbers of respondents.. They both have the same 
subset of common binary (usually demographic) variables X. Data set A has also Y 
variables, binary and/or numerical (usually media or brand related). The goal is to create 
dataset C, which contains the entire dataset B together with, ascribed to each respondent, 
values of variables Y. Ascription should satisfy two conditions:   

1) Compositions (and/or typical numerical values) of Y variables, for each value of X 
variables in C, should be close to ones in B  

2) Correlations between Y variables in C should be close to correlations in B. 
These conditions, especially 2), in the case of many Y variables, are very hard to 

satisfy for understandable reasons. It’s enough to note that the number of correlations 
between variables is proportional to the square of number of variables; a typical data set 
with about 1,000 to 5,000 media vehicles gives several millions of pairs. But correlation 
in media planning is not just of academic interest; for media vehicles, it translates as 
duplication  (when the same person is exposed to advertising in several media channels), 
that can directly affect media budget allocations, etc.  

For that last reason alone, the traditional methods of making some kind of models for 
Y variables on data A and then plugging them in B, using the common variables X (as, 
for example, in [1], do not appear to be sufficient. Even if problem 1) could be solved 
well, it doesn’t help to solve  problem 2). But usually even requirement 1) cannot be 
satisfied with a direct modeling approach. The reason is that relations between all Y and 
X variables on A should be strong enough to make a good prediction – which is very  
rare, at least in my experience. 

There is another problem with practical fusion. The farther structures of X variables 
in two datasets are from each other – the worse the fusion results are, no matter how good 
the prediction from X to Y is in a source. This is easy to demonstrate with a  numerical 
example, as shown in Figure 1.  
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On the left pan, data set A, there is a fragment of source data: it has original observed 
values for two demographic variables and two media variables. In data set B, 
demographic variables are observed, but media variables – ascribed. The demographic 
structure in B is different from one in A: Hispanic represents 70% in B vs. 40% in A. The 
purpose of ascription was to make all proportions of data B, as close as possible to ones 
in A – but in what sense?  

 
Fig. 1. Effect of demographical structure differences to results of fusion 
 
If one tries to minimize the particular cells difference for percentages to rows, which 

are in light green in A, and have the ideal fusion algorithm, which makes frequencies of 
fused data the same in B –then inevitably totals will be different: (brown in B vs. dark 
green in A). Similarly, if one minimizes the totals differences and fit it perfectly – the 
cells will be different.  

So, when demo structures in two data sets are different – it is impossible to make a 
very good fusion, even using ideal algorithms. And this is a very typical situation for 
many marketing data sets: their demographic bases are different. Of course, one can 
make a compromise between totals and particular cells, but then it is not clear which of 
those are more important, keeping in mind the final goal of a fusion, and how to 
coordinate these two aspects.  

Yet another problem is that dealing with many thousands of Y variables, and 
controlling for tens of X variables, create so many combinations (especially if taking into 
account correlations), that computational problems may just be prohibitive.  

In order to address these and other issues, a new approach was proposed. In essence it 
is a specific way of cloning respondents from A into B in a most plausible fashion. It is 
different from predictive modeling in one important aspect: all Y variables are considered 
“in bulk”, not modeled separately; the idea is to imitate Y behavior in general, rather than 
understand why it happens for each variable (what modeling usually puts as a goal). The 
details of algorithms are proprietary for Telmar Inc., but the results are rather impressive.    

One hundred thousand respondents in data set A were fused with 3.1 m respondents 
in Centab, a Telmar demographic data base [2];  the two data sets had significantly 
different demographic compositions, which as shown below, worsens results, but the 
level of errors is still good, keeping in mind that around 1,000 variables were ascribed 
(Fig.2). 
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Fig. 2. Relative errors of ascription for 1000 Y variables 

 
Each value in a table was calculated on all vehicles – say, value for Charleston/ 

Females means that median value of deviation in frequencies between ascribed and 
observed data for Females in Charleston for all 1000 vehicles is 19%. Deviation was 
calculated as the absolute difference between two frequencies divided by the frequency of 
the observed data. Of course, with this formula, small frequencies in A create, in general, 
large deviations, although they may not mean much in a practical sense. For example, if 
in dataset A, female readers of Vogue represented 0.5% of all females, while 1.5% in 
ascribed dataset B, then the statistic will be 300%. But for media planning both figures 
are considered just “small”. But even with this caveat, deviations are not that large. 

 Errors for correlations (the first column) were calculated based on frequencies of 
interception between the vehicles. It is of special importance that  are also small. All 
errors are about the same for large (like New York) and small (like Charleston) cities, 
what is also remarkable. Computational time for fusion was about 2 hours. 

 
2. Causal analysis – the intrinsic probabilities approach   
 
There is no place here to discuss numerous problems, controversies, and drawbacks 

in these approaches; it was discussed in length in [4,5] and other works.  
 

The past two decades have witnessed a burst of works about the causality 
problem, and causality has been considered in statistical literature from different 
angles. The main approaches under development were simultaneous structural 
equations (historically the first, derived from works of S. Wright in 20-s); 
potential outcomes, proposed methodologically by E. Neiman in 20-s and 
technically developed by D. Rubin and others from 70-s; concept of do-operators 
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and associated with them acyclic graphs, developed by J. Pearl and colleagues 
started from 80-s and tightly related with Bayesian networks theory. Some 
methods and approaches were developed by J. Robins, W. Dawid, I.Mansky and 
other researchers; a little bit aside stays “Granger’s causality” theory. There is an 
opinion, defended prominently by J. Pearl [3], that almost all of these approaches 
in fact talk about the same things, but use different terms and stress different 
aspects of the problem. I’m not sure it is rightly justified or not, but if it is – what 
follows would thus get even more indirect support from this observation.. 

I cannot here consider all the literature even at glance, but there is a strange 
impression from all that I have looked at: practically no authors introduce a 
clear definition of what the cause is and what is, respectively, the topic of all 
these studies. Maybe, the vagueness of the term “causality” is the main reason 
why some prominent scientists do not really consider it seriously or use it 
reluctantly. One of these is L. Zadeh, inventor of fuzzy logic, who noticed once 
that he does not see a way to define causality strongly, and for that reason, cannot 
see a possible theory [4]. In one of the badly determined examples he brings the 
following: a friend of mine calls me up on the telephone and asks me to drive over 
and visit him. While driving over, I ignore a stop sign and drive through an 
intersection. Another driver hits me, and I die. Who caused my death? 

Out of all four chained events which “caused the death” – friend’s call, 
driving a car, ignoring a red light and being hit by the car - the argument goes, 
one cannot formally separate “real causes” from “fictitious” ones, and so a theory 
is not possible (L. Zadeh brought other arguments, too). As J. Pearle remarked on 
that, it leaves him (Pearl) “scientifically unmoved” http://bayes.cs.ucla.edu/BOOK-
2K/hautaniemi.html – i.e. he will continue working on the theory, but by a weird 
coincidence, he still doesn’t say what exactly to do in situations like that. His “do” 
operator fixes values of certain variables in order to see how others behave, but 
this very procedure, as will be shown, does not address the Zadeh’s issues. 

 
2.1 Individual and statistical causes. 

 Causes could be looked at under different angles, and mixing these is, maybe, 
the main source of confusion in literature. Let’s consider here briefly only two of 
these aspects: relationship between causes of individual event and causes in a 
statistical sense (where there are many individuals or events). There are other 
separation lines, like causes of very particular events (breaks in engineering) vs. 
causes of processes, as in social life, etc., but I cannot consider them all here. 

 If one takes any individual situation where the question “why?” (ie. appeal 
for causal explanation) rises, it will be always like in Zadeh’s example given 
above. It could be formally presented as chain of events causing one another, 
where on each event point there is a chance for potential “No”, i.e. for assumption 
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that this given event didn’t happen and all further part of a chain would not be 
materialized. In the provided example: 

a. if friend didn’t call – he will not drive;  
b. if he called, but he was not in hurry on a way – he will not be hit by a car; 
c. if car’s driver was more experienced – he will not be hit by the car; 
d. if car was driving with less speed – the crash will be not fatal, etc. 
Technically, it is a graph with many nodes going to eternity at the bottom and 

to death at the top, where from each node there are two or more imaginable 
options, out of which just one was real and all other “would be” but were not – 
see Fig.3. At each important point there is an opportunity to change something 
(do not react to call, do not drive, etc.), but they all are ignored in a real stream of 
life. What is important – each lost opportunity immediately generates a chance for 
another, this time illusory application of certain force, i.e. making action, which in 
turn, would be mentally prolonged even further (with cutting other illusory 
opportunities) – and, if desired, the whole chain could easily end up in the same 
terminal point B. In our case – a driver could not ignore a stop sign, but still be 
dead for many other possible reasons. 

 

Fig. 3. Graph of real and illusory causes and opportunities for event C 

The point B on a chart shows, that two other real causes (besides of one 
originated from A) affected decision to be made at this moment (A is a “friend’s 
call”, B could be “decision to drive”, and the two side causes could be “I have a 
car” and “I have time to go”). The traditional causal theory presumes, that causes 
like that not only work, but work on statistical level as well, i.e. for many 
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situations (see below). However, it is quite clear, that there are immeasurable 
number of similar “real causes”, and what is most important, they are applied to 
each point of the chain. It is absolutely impossible to discern them from many 
observations and from many trees like that. They in fact would be an “illusory 
causes of the second degree” – in that case not because they have been rejected 
as red arrows, but because they are deeply enrooted in any decision and for that 
reason undistinguishable from it. In other words, the two reds from B were made 
after considerations (subconscious, for this matter) of all these thick greens – and 
for that reasons these greens are irrelevant, even on individual level. Much more 
so on a level of many trees. 

This picture is in fact nothing more than an evolutionary tree, applied to each 
event caused by “all history”. If understood as such, all possible theories of 
evolutionary development could be applied into causal analysis (see the excellent 
survey of economic and social life from this angle in [4]). The only problem with 
evolution is, however, that it is, strictly speaking, not to be predicted and even 
modeled at all. The only plausible way to deal with it is to use a certain type of 
agent based modeling imitation, which, in turn, has many internal problems [6]. 

On a side note, trees like those on Fig.3 are the basis for different tales or 
“alternative histories” – with omission of the fact, that if you assume just one red 
arrow as “materialized opportunity” - like “would the first World War happen, 
had Gavrilo Princip not killed Archduke Franz Ferdinand?”- you cannot really 
imagine following broken greens and even less broken red arrows. Usually, the 
imagination of authors goes just to the first fork.  

So, coming back to formal modeling of causality on an individual level, the 
first problem is to find a stopping criterion – where to break a chain in order to 
make it meaningful. It was exactly the problem which Zadeh thought to be 
formally unsolvable, and, strongly speaking, this argument is impossible to deny, 
unless one makes a forced decision – say, to cut always after the first level.  The 
most interesting illustrations to that difficulty give many courts decisions, which, 
supposedly, should reveal “the real causes” and charge those who are guilty (in 
fact, causality should be the only business of the entire justice system). When, for 
instance, a lady bought hot coffee in McDonalds, put it between her knees, started 
to drive and then after spilling it famously won a case against McDonalds (“cause 
of the burnt skin is that coffee was hot when she bought it”) – this type of causal 
relations would be really hard to set as plausible in any not insane framework, but 
it is yet a “legal cause” to pay her “compensation”. In this case all parts of the 
chain are for certain reasons ignored, and the stopping criterion was “McDonald’s 
fault in making coffee hot”. But it could easily go further (“why people drink hot 
coffee”), or shorter (“why she put it between her knees”), what will create a 
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different legal output, from “drinking hot coffee is illegal” to “plaintiff’ claim is 
denied as not grounded” etc.  

Now let’s imagine that we have many “individual stories’ like that, i.e. we try 
to understand a typical statistical situation when some kind of repetitive, not 
unique events, take place. The first question to be asked is: what is on the top of 
these charts (with any depth)? It is not trivial. For the police department it is clear 
that we should collect only cases with death at the end (continuing Zadeh’ 
example) – otherwise we lose the point of the study. If we follow this logic, we’ll 
have, say, thousands of charts with the same result – death in a car accident – and 
very different patterns of the histories behind them. It is quite clear that the event 
“friend’s call” will appear in these histories very rarely if ever, but, say “running 
on a street” – much more often. But can  such data  potentially give us? Would it 
provide us with the causal explanations, even if the trees are deep enough and we 
analyzed them carefully? 

Many people would say “yes”. This is, for example, how medical statistics 
works: to the question what are causes of death, it lists all “prima causes”, like 
“cancer”, “stroke” and so on and the distribution of these causes gives us a 
picture of the phenomena. Going to the next level, they may add (although with 
bigger difficulties) that “cancer” could be “lung”, ‘kidney”, etc., but logic does 
not change with this – it’s still listing the causes, but not revealing the 
mechanism of the event. As we reached the point “why lung cancer happened” – 
then immediately this logic fails and a different story began. The same is typical 
to almost all technical problems: no one cares about normal process (no one asks 
question “why car drives?”), but everyone bothers when something happens and 
needs fixing. Again, if, say, “lamp doesn’t work”, the list of possible causes could 
include “a broken bulb”, “an unplugged cable” and so on but at certain point on a 
causes tree “explanations” like that became meaningless (just try to systemize 
“why cable was unplugged?”). 

At this very point we reach a situation when collection of data only about 
events of interest becomes not sufficient. In order to understand why “cables was 
unplugged” or “lung cancer happened” we need to compare these cases with 
others, where these target events didn’t take place. Technically, it means, that 
instead of having Y variable (the outcome) with one value only (say, 1), we have 
to go to the situation when Y could be either 1 or 0. But what does it really mean 
if we are still within our set of individual models? For police department, it means 
that not only “death cases” are considered, but “non-deaths”, too. Which ones? 
What kind of history should we collect about these “cases of being alive”? The 
problem immediately becomes uncertain.  

It is clear, that the deeper we go into the chain, the less meaningful our data 
becomes. If one collects data about “all those who got calls from friend with 

JSM 2013 - Section on Statistics in Marketing

1725



request to meet her” – it would be a nightmare. If only about those who “run on a 
street” – it would not be much easier. If about those who were hit by the car, but 
survived – than it becomes more practical (at least because these cases are usually 
reported to the police).But the price paid for application of this stopping criterion 
would be very high: we do not consider millions of these who really were in 
dangerous situation (run over the street but was not hit). If we don’t count for 
these, we, respectively exclude from consideration such possible measures to 
avoid accidents as to block the pedestrians from crossing the road. But it was only 
one of the very many nodes in a set of collected scenarios of deaths. All others 
are, maybe, not less important – but we really do not know anything about that, 
for we never are able to collect such a vast data to please our curiosity for “the 
full causal explanations” on all available trees. Here is one of the very big 
problems in setting the observational or even experimental study: a huge 
asymmetry between “target values” and “non-target outcomes”. It is never clear 
what to put into “control sample” against, say, “Mercedes buyers” – all rich? All 
urban residents? Whole population? But depending on the answer the whole 
model will be completely different. 

And here we enter the interesting area of the building of scientific paradigms. 
In real life, people almost always limit themselves just by “prime reasons/causes”, 
like “he died from the cancer”, “the cable was unplugged”, etc. The whole 
machinery of the statistical learning also follows the same paradigm: trying to 
estimate the effect of direct “causes” to the known Y variable. But special 
causality literature mainly contains models, which consider mutual effects of 
different variables to each other, i.e. reflecting this eternal chain of events at 
rather arbitrary cutting points. Ironically, it very often lacks any temporal 
component – a necessary ingredient of causality in individual modeling, but 
nevertheless, “circles”, “confounders”, “counterfactuals” are typically employed 
slang in a causal literature [3,5,6,7]. But all these terms are just shadows of the 
individual graphs, transplanted without the reasons into a statistical situation. 
From the simple consideration of individual causes is clear, that any trees have in 
fact illusory character – how could it be otherwise for many observations? They 
may be analyzed via “what-if” techniques (with big difficulties anyway), but for 
modeling - only way to consider statistical repetitive events is cut off the all 
leaves and look into repetition of the direct predecessors – materialized causes of 
the target events.  

Why this shift in paradigms happened? Does it mean, that “direct causes 
analysis” is already a passed stage in science and statistics knows how to deal 
with it? Not at all – in any textbook one may find a statement that “correlation is 
not causation”, after which authors very smoothly go into models having only 
direct factors (causes) like regression and do not mention causes anymore, unlike 
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in specific causal literature. As a result, it seems there is a strange gray area: 
analysis of direct causes “of the first order” is not really considered with sufficient 
depth. Where these first order causes are analyzed – they are not called causes, 
where causes are studied – there is no special treatment for the direct first order.  
So, I would start with this “simple” situation, when one supposes that some direct 
causes are known (like independent variables in regression) and needs to make 
causal, not associational model. And the main conclusion from considering the 
individual models is that in statistical sense is it impossible and/or impractical to 
follow all individual trees. The only thing one can do is to consider the 
probabilities (frequencies) of the target appearance for each variable value. It is a 
basis of the proposed approach.  

2.3 Causal intrinsic probabilities  
Let us consider the simplest possible situation when we have a data set 

containing one variable X – supposedly cause for the variable Y. Let’s further 
assume X and Y are binary, with Y=1 meaning that effect of interest happened. 
First, let’s try to answer the question, which is rarely posed: in what sense we 
agree that X caused Y? There are several possible situations. 

1. X could be a condition, under which Y=1 is always occurring. In this case 
the cause is called sufficient for the effect. The examples are “unplugged cables” 
for not working lamp and other similar situations, very typical for technical 
understanding of causality. In this case if X=1, Y always has value 1, but all other 
combinations are also possible. 

2.  Y could be such that it doesn’t appear without X. The examples could be 
situations like “water doesn’t boil if temperature is below 100 degrees C oat  sea 
level”; “one cannot run for President of US, if she was not born in the US” and so 
on. Causes like that are called necessary for the effect. In this case, if Y=1, X 
always has value 1, but all other combinations are possible.   

3. Up to this point, everyone agreed about these two types of causes. But in 
reality these two types of causes ither do not exist or attract no interest due to their 
triviality. The problems arise when one is talking about causes which are neither 
sufficient nor necessary, which represent a lion share of all causes in real life 
which are important to recognize. Some call them “contributory” in a sense that 
presence of the causes contributes into appearance of the effect. Some distinguish 
them from “conditions”, which are not causes themselves, but still important to 
set up the correct framing for causal analysis.  

I would not go into details of these debates, but instead propose the following 
definition: a contributory cause is a certain combination of circumstances in 
universe, which produces constant effect within time and space of the studied 
phenomena. Let’s clarify what all these words mean on simple examples. 
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a) If any case of “running over the street” means that you are hit by the car – 
the running would be considered as sufficient cause for being hit. In fact, since 
but small fraction of cases of running yield this result – one may say, that ratio 
“hit/running” is a measure of contributory cause intensity. 

b) If “percent of mathematicians” among men is, say, 3 times higher than 
among women, “being a man” is a contributory cause of “being a mathematician”. 
However, “being a woman” also contribute into the same effect – so, it is also a 
cause, but with smaller “intensity measure”. 

c) If one knows that only people having income more than one million a year 
could afford to buy a Ferrari, “being in 1 m plus income category” determines a 
contributory cause for car’s buyers, but having lower income does not. 

From these examples follow several features, what contributory causes have. 
1. Each cause works as an “independent entity”. This is a principle 

statement. It means, we assume some “intrinsic feature” in each particular 
“combination of circumstances” such that the effect is always the same. Of 
course, “always” here is understood within the local content of a particular study 
and depends on study design – but it is true for any statistical analysis and is not 
anything unusual. What is unusual though – that “yields” of each cause are 
somehow internally inherited for the situation which represent a cause. If one 
thinks that combining several causes permanently creates different yields – these 
combined causes should be explicitly named and studied separately. If, for 
instance, one thinks that yield of mathematicians is different for “men” and for 
“men from wealthy families” – than another variable, “wealthy men”, should be 
introduced and measured. In that case it is not necessarily, that, say, weighted 
average yields for wealthy and non-wealthy men would be equal to one for men. 
The reason is, a new combination “wealthy * men” could create some synergetic 
effect, which would increase or decrease yield of any of its components – but we 
don’t consider it here. In short: one cause – one expected outcome (yield) from it. 

2. Each cause is associated not with a whole variable (like “gender” in 
example b) above), but only with one level of the variable. One yield is for men, 
another for women; one is for “running over the street”, another (if any – see 
below) – for not running, etc. It is also quite fundamental requirement and at the 
same time it is in full accordance with common use of causal language in 
everyday life. One cannot say “gender causes mathematical occupation”, but one 
may say “if you are men, you are more likely to be a mathematician”. This simple 
and seemingly obvious statement makes however a principal detachment from 
traditional statistical way of doing analysis: one should look at these “grades 
related yields” rather than on coefficients of general “association” (or regression), 
linking “gender” and outcome with one shot. It produces respectively new 
techniques, as will be shown shortly.    
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3. Causes as “physical forces” are not distinguishable from causes as 
“conditions of life”. Instead of saying “let’s make different models for different 
conditions with the same causes (variables) in them” it says: “do not distinguish 
between these things as far as you can measure either causes or conditions”. It 
makes analysis technically simpler, but does not undermine its quality. In fact, 
statisticians very often do not distinguish these (conditions like “weather”, “days 
of week”, etc., are typically considered just as variables) – so, I agree with this 
practice. And although it sounds weird to hear “Sunday is a cause of big sales”, 
but for simplicity sake it’s better to accept it, than try to create different 
techniques for these things.  

4. One a different note, consider this: if it is known that direct cause of an 
illness is a particular type of bacteria, but these bacteria have different (known or 
not) probability to live in males and females. A gender as a “cause-condition 
combination” could be legitimately considered as a cause of the illness. As earlier, 
to say that gender is a “cause of the illness” is to simplify the language. It is a 
cause just in a sense, that physically women and men are “charged differently” 
with certain level of “direct causal force (bacteria)”, which needs to be 
determined by the model. What is important – the fact that something (even 
Sundays) create specific yields for the outcome of interest to be detected. But the 
logic that causes are always some kind of “forces” should not be forgotten (see 
formal analysis of forces and fields in social life in [8]). It helps to distinguish 
between two situations considered in 4.  

5. Example b) above describes situation, where there are quite obvious two 
types of causal inference – one for man and another for women. But examples a) 
and especially c) illustrate something different. Yes, one may assume that high 
income is a “cause” to buy an expensive care. But what about the “others, i.e. 
when X=0 in our notation? Do they also “cause” some level of Lombarghini sales, 
much smaller than for subgroup X=1 or we may treat purchases in that group as 
“random”, i.e. it happened, but not because they belong to X=0 (it would be 
causal then), but just because “sometimes purchases happen regardless of 
income”? This is actually one of the key questions in causal analysis, but as far as 
I know it is not specifically understood and recognized.  

The distinction should lay in a presence or absence of “charging force”. There 
are variables where each value is “charged” with potential to create an outcome 
(as in “man – women” example), and other, where just one value does that in 
meaningful way, like “other income”. Or, say, “Spanish” descent can produce 
some cultural traits, i.e. can force to move something, but “Non-Spanish” cannot. 
These two variables will be coded as binary, but they should be treated differently 
from causal point of view (not like in regression analysis or statistical learning). 
Another example: a variable “Income” with grade “Income from 50 to 75 
thousand dollars” (1) and all others (i.e. smaller and higher) as 0. It is hard to 
expect that 1 is methodologically equal to 0 and one should look for “yield” for 
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such a grade, which combines both low and high income. But very many datasets, 
especially in marketing, are designed in that way.   

Let’s summarize main assumptions made so far, in concise form. 
1. Cause is some force, either physical, psychological or social, which drives 

the outcome (effect). It pushes events in certain directions that results in outcome. 
2. Subject of the analysis are only singular outcomes, like “causes of the 

wounding”, not the network of causal relationships (like what are the reasons, 
why one wounded the other, etc., as in SEM framework).  

3. Only “direct causes” are considered, i.e. forces, which drive the outcome, not 
forces, driving these direct forces.  

4. Conditions of environment are non-distinguishable from “direct forces”. 
As far as certain combination “direct cause – condition” is assumed to generate 
some outcome, it is considered at par with “direct cause”.  

5. Causes can be either sufficient or necessary for outcome to appear, it 
doesn’t affect the modeling. The only thing which is known for sure – the 
outcome had some causes, but there is no way to say the opposite (that cause 
produced the outcome), unless it is specifically proven.  

6. Each value of the potentially causal variable produces outcome with its 
own intrinsic probability. This probability is an aggregated representation of 
many individual trees lying behind the scenes in each particular individual, which 
are cut by value of this variable. 

7. Usually, there are some causes, which cannot be associated with any 
measured variables, but still produce outcomes – let’s call then random causes.   

8. The purpose of causal analysis is to estimate the intrinsic probabilities (or 
“coefficients of generation of outcomes”), using observed data. 

All that is a radical departure from regression-like (or, wider, statistical learning) 
models, as well as from traditional models of causal analysis. This model is not oriented 
on mutual variation of outcome and causes, but directly on internal relationship between 
“producer and the product”.  Particularly, if correlation between dependent and 
independent variables are zeroes – regression (and based on it SEM), Bayesian networks 
models, etc. would yields zero coefficients, i.e. whatever the model, causes are not to be 
captured. But in the proposed approach it is not what will happen. 

 
2.1.Causal analysis model  

Let assume for simplicity sake that all causal variables are nominal, and they also just 
originate qualitative output. Then one may say, that each grade of the causal variable has 
its probability of generating output, regardless of values of the other variables. Random 
cause has the same effect. 

Technically, if there is just one causal variable X with values Xo and X1 and binary 
outcome variable Y, the mechanism of effect generation will be like that:  

  

 Y = �
1, if(Y ∈ A(X|1)orY ∈ A(X|0)orY ∈ A(R))

0 otherwise
                    (1) 

where 𝐴(∗) is a set of ones generated by either source, R stands for the “random 
generator”. 
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From (1) follows that condition for Y=1 to occur is an “or” (disjunction, or union) 
function: values from two different sources –associated with measured variables and 
random – are not to be summed up to calculate total number of effect occurrence. The 
same value Y=1 would appear when either one or several causes would force it to appear.  

It means that the total probability of the outcome would follow the rule of sum of 
probabilities, because random causes and “variables determined causes” are independent 
of each other. If one assumes, that both Xo and X1 generate outcomes Y=1with intrinsic 
probabilities 1 ≥ α ≥ 0 and 1 ≥ β ≥ 0,  while probability of the random outcome is ρ, 
the adequate equations are: 

                   S0 = α + ρ − αρ                       (2) 
S1 = β + ρ − βρ, 

where S0 and S1are total probabilities of Y=1 in groups Xo  and       X1 respectively 
(the only measurable directly quantity). 

For two causal variables there are four zones of intersection, and in each works the 
same rule: 

 S11=α1+β1 +  ρ − α1β1 − α1ρ − β1ρ+ α1β1ρ 
 S12=α1+β2 +  ρ − α1β2 − α1ρ − β2ρ+ α1β2ρ 
 S21=α2+β1 +  ρ − α2β1 − α2ρ − β1ρ+ α2β1ρ      (3) 
 S22=α2+β2 +  ρ − α2β2 − α2ρ − β2ρ + α2β2ρ 

where α1and β1are the probabilities (frequencies) of grades of different variables. 
If number of binary causal variables is K, then number of unknown values like α, β, ρ 

is 2K+1, but number of nonlinear equations like (2) and (3) ~O(2^K), i.e. started from 
K=3 number of equations exceeds number of variables and system became over 
determined.  

The systems of equations like (3) for any K, according to Dr. B. Goldengorin (private 
conversation, for which I’m thankful to him), could be reduced to integer non-linear 
optimization problem, to be solved by so called Boolean, pseudo-Boolean approach [9]. 
It is possible, that some other methods could be applied.  

The mathematical problems of how to solve these equations, how to make 
generalizations to non-binary causal and outcome variables and so on are not topic of this 
article. The simple heuristics I used to find the coefficients found perfect solutions on 
generated data, where regression estimates were deadly wrong. It is not surprising: this 
model does not do “summation of the causes” (which no one knows what is that about), 
does not create complex equations of the unknown nature, but modestly tries to separate 
different reasons one from another. In particular, it begs for completely different view to 
the multicollinearity problem, because intersection of the X variables just means that 
more outcomes from two or more sources need to be separated – moreover, it is built to 
work with collinear variables. This and many other interesting questions should be 
addressed in a future.    
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