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Planning a Conversation about Quantitative 
Literacy and Teacher Education

Bernard L. Madison∗

University of Arkansas

Can bad numbers do good?
— From Wingspread discussions

The task was ambitious, some would say hopeless: create a productive two-
day conversation among thirty scholars—most strangers to the others—about 
two virtually disjoint—some would say unrelated—components of US educa-
tion. One component, teacher education, is a staple of US education, confined 
in multiple bureaucracies, spread across higher education but governed by 
schools of education, and firmly entrenched as a national priority. The other, 
quantitative literacy (QL), has no academic home, is poorly understood and 
hardly recognized by either academe or the US public, but nonetheless consid-
ered important, even critical. And to what end? Better education for QL and 
for teachers, of course. But what concrete outcomes of the conversation could 
make a dent in these enormous and operationally unconnected enterprises? 
Recommendations from much more extensive conversations about narrower 
issues are often no more effective than shouting into the wind, so even if the 

———
*Bernard L. Madison is professor of mathematics at the University of Arkansas, having served as 
department chair (1979–89) and dean of the Fulbright College of Arts and Sciences (1989–99). 
He has recently directed major NSF-funded national faculty development projects in assessment 
and the mathematical education of teachers (with Alan Tucker). Having written or edited several 
articles and books on quantitative literacy and assessment, he is currently writing materials for 
and assessing learning in a case based course in quantitative reasoning. A native of Kentucky 
with a Ph.D. degree from the University of Kentucky, Madison was professor of mathematics at 
Louisiana State University prior to going to Arkansas as department chair.
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conversation resulted in an unlikely consensus on what should be done, recom-
mendations to educators and policymakers was not a goal. Rather, beyond the 
valuable outcome of strangers no longer being strangers, the concrete com-
munal outcome sought was a list of questions that institutions might address to 
audit their programs of teacher education and QL education: a small beginning 
step on what is likely a long journey. 

The new kid and the old hand …
For a decade a small loosely organized group of interested folks led by histo-
rian Robert Orrill had strived to make QL better understood and a priority of 
both school and college. Some of these were mathematicians, some statisti-
cians, but several other disciplines were also involved. A national forum in 
2001 brought together 130 scholars and policy makers to focus on QL educa-
tion at the juncture of high school and college (Madison & Steen, 2003). Much 
of the forum discussion tossed about the meaning of QL, where responsibility 
for QL education lay, and the relationship of QL to mathematics and statistics. 
The smaller conversation of thirty was to build on this beginning, eventually 
engaging a larger and more diverse audience.

For a century schools of teacher education had graduated tens of thousands 
of teachers as US education thrived. But recent international comparisons 
showing weakness in US education, especially mathematics education, had 
spurred rethinking of the mathematical education of teachers. One of the glaring 
weaknesses appeared to be in QL-related areas such as solving contextual 
problems (OECD, 2003; 2006). Perhaps the time was right for merging the 
comparatively youthful discussion of QL with the age old but re-invigorated 
discussion of teacher education.

In this context, the workshop, Quantitative Literacy and Its Implications 
for Teacher Education scheduled for Wingspread Conference Center in 
Racine, Wisconsin, June 22–24, 2007, was structured during December 
2006 and January 2007 to integrate the recent initiatives on education for QL 
and the mathematical education of teachers. The QL initiative centered on 
projects of the National Council on Education and the Disciplines (NCED) 
over the past decade, which included the 2001 publication Mathematics and 
Democracy. The teacher education initiative grew around publication of 
The Mathematical Education of Teachers report in 2001 by the Conference 
Board of the Mathematical Sciences (CBMS). Both of these publications 
emphasize developing habits of mind, one a habit of mind to understand and 
use quantitative information in everyday life and the other a mathematical 
habit of mind required to teach mathematics well. Beyond these tangential 
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connections, however, the discussions of mathematical teacher education and 
QL have had little obvious overlap. The Wingspread workshop was a first step 
toward synergistic cooperation between teacher education and QL education 
where teacher education is not restricted to mathematical education. 

Why QL and teacher education together …
The obvious reason why teacher education and QL education should be consid-
ered together is that K–12 education is responsible for much of QL, and K–12 
teachers need to be able to guide students toward QL. Although QL should be 
an aim of education across all subjects in K–12, a large part of the responsi-
bility falls to K–12 mathematics, which includes data analysis, statistics, and 
probability. Although part of the aim of the workshop was to elicit support 
from several disciplines in preparing K–12 teachers better in QL, the primary 
focus was on the mathematical education of teachers as a means of preparing 
them as QL educators. 

The mathematical education of teachers has received considerable recent 
attention because there is growing evidence that it can be improved through 
the collaboration of mathematicians and mathematics educators. Education for 
QL has received attention because of the growing demands on US residents to 
understand, utilize, and react to quantitative information and analyses in their 
daily lives. This growing demand increases the need for stronger quantitative 
education in K–12 and in college. An important component of the student 
population for this stronger quantitative education consists of future teachers. 
Consequently, teacher education and QL education are intertwined in ultimate 
purpose but loosely connected in educational practice.

Everyday contextual situations are heavily utilized in early school 
mathematics (and non-mathematics) studies but become much less evident 
in middle school, high school, and college mathematics. The data analysis, 
statistics, and probability strand in school mathematics does maintain some 
everyday contextual connections, but in college statistics courses are usually 
separate from mathematics courses. Many college statistics courses are 
methodological or theoretical and have minimal everyday connections. As a 
consequence of these circumstances, there seem to be advantages from merging 
the two efforts. 

For example, improved mathematical education for teachers results from 
connecting the mathematics of the college classroom to the mathematics of 
teaching in school, and QL education is largely about connecting learning and 
reasoning in mathematics and other college disciplines’ classrooms to contextual 
situations in the contemporary world. Another example is that resolving QL 
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situations requires data analysis and a process similar to the scientific method 
both of which teachers should understand and utilize. This similarity would 
provide additional coherence in problem solving in and beyond school. A third 
example of an opportunity for synergism is to understand the relationship 
between mathematical proficiency and QL. A very nice model of mathematical 
proficiency that seems very adaptable to QL is given in Adding It Up, where 
mathematical proficiency is described as five intertwined threads of conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, 
and productive disposition (Kilpatrick, Swafford, & Findell, 2001).     

These and other analogies and connections, plus the opportunistic 
circumstance of being involved in both the QL and teacher education 
initiatives, prompted my October 2006 proposal to the Johnson Foundation 
for the workshop. The proposal had its origin in a small gathering I attended 
in August 2006. Then Johnson Foundation President Boyd Gibbons invited 
several people1 to the Wingspread Conference Center in Racine, Wisconsin, 
to discuss a series of conferences to craft a new vision of high school through 
college education from a “clean slate.” That discussion, which focused largely 
on revitalization of undergraduate liberal education, identified several possible 
conference topics. Among those topics, quantitative literacy was reasonably 
prominent as a subject for curricular innovation. The proposal for the QL 
and Teacher Education workshop was a follow-on result largely because of 
opportunistic funding possibilities, but also because of the potential educational 
connections and synergisms.

Focusing the conversation …
In order to focus the discussion on QL and teacher education rather than on one 
or more of the meaning of QL, assessment of QL, liberal education, and assess-
ment of liberal education, the workshop steering committee2 commissioned 
seven papers on aspects of QL and teacher education. Three of the seven—on 
situational learning, teacher certification, and fractions—were directly related 
to teacher education. In the end we had eight papers3 since proposed co-au-
thors of the fractions paper, Milo Schield and Alan Tucker, had very different 
perspectives, so they decided to produce two papers. Historian Robert Orrill 
and psychologist Neil Lutsky would write on words and numbers—Orrill from 
the perspective of the humanities and Lutsky on argument and numbers based 
on experience with a Carleton College initiative. Sociologist Joel Best would 
address numbers and public policy, British physicist-turned-mathematics-edu-
cator Hugh Burkhardt agreed to discuss situated learning, Corrine Taylor in-
vestigated the QL needs in business and industry, and Frank Murray would re-
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late QL and teacher certification. The initial drafts of each of these papers were 
reviewed by at least two workshop participants, and the authors responded to 
the reviews with a workshop draft. Each paper would be the subject of a ses-
sion at the workshop, and the authors would produce a final draft in light of 
these discussions.

With the essays commissioned, the steering committee set about the 
task of inviting participants. With a dozen of the thirty slots committed to 
authors and committee members, filling out the participant list for an effective 
workshop was replete with options. Even though the workshop focused on 
US undergraduate education, there were numerous relevant perspectives—
teacher educators, professional societies, assessment experts, policy makers, 
undergraduate education specialists, and scholars from the humanities, social 
sciences, sciences, arts, engineering, business, mathematics, and statistics. 
Eventually we invited participants from more than a dozen disciplines 
representing a wide spectrum of interests and expertise.  

To move the discussion of QL education forward, the workshop call 
assumed knowledge of several previous publications on QL and teacher 
education. These included Mathematics and Democracy (Steen, 2001), 
Quantitative Literacy: Why Numeracy Matter for Schools and Colleges 
(Madison & Steen, 2003), Achieving Quantitative Literacy (Steen, 2004) 
and The Mathematical Education of Teachers (CBMS, 2001). In addition, of 
course, the eight commissioned papers were distributed to participants prior to 
convening on June 22, 2007. 

The workshop program … 
What workshop program would fuel a productive conversation among thirty 
(eventually this became thirty-one) scholars from multiple disciplines? The 
commissioned papers provided a foundation, but each participant was ex-
pected to have some session leadership role, giving rise to three plenary pan-
els—one highlighting classroom experiences, one on the institutional audit, 
and the third on influencing the establishment. The eight commissioned papers 
were discussed in two parallel sequences of two sessions, pairing the two pa-
pers on words and numbers, two on fractions, two on situated learning and 
teacher certification, and two on QL in business and public policy. This was 
promising, but how would the workshop begin? Who would set the stage for 
the conversation? 

The steering committee agreed on Richard J. Shavelson, Stanford 
University, who had recently written on his extensive involvement in the 
innovative Collegiate Learning Assessment. When invited, Professor Shavelson 
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asked how we would suggest that he address the issues of teacher education and 
QL. To help construct a response to this, one member of the steering committee 
wrote me describing a recent paper by Shavelson.

What [Professor Shavelson] gives in that paper is a broad and multidimensional 
view of the multiple forms of knowledge and related goals of education, 
juxtaposed with the comparatively narrow focus of commonly used tests 
on a small part of that broad domain. In fact, he argues that there is a 
disconnect between what matters most in education and what we are now 
testing. This, to my mind, draws a broad and radical framework in which to 
locate teacher preparation broadly (all fields) and specifically (quantitative 
reasoning). It also sets up especially challenging issues for teacher education 
since teachers are now pressured to “teach to tests” that are unaligned with 
the most important uses of knowledge. (Knowing this, what are the ethical 
responsibilities of educators and higher education overall?) So, I would ask 
him to spell out the big problem outlined above—offer a few thoughts on 
teacher preparation—and then share with us his thoughts on how we might 
create worthy assessments that would be worth teaching to.

Since we were promoting a truly interdisciplinary conversation, we wanted 
also to relate QL to both pre-professional and liberal education. We turned 
to Deborah Hughes Hallett who has extensive experience in QL education 
in mathematics at Harvard University and the University of Arizona, and in 
public policy at the John F. Kennedy School of Government. She agreed to 
lead a plenary conversation following Shavelson’s presentation to help open 
up issues for discussion in subsequent sessions.

The two plenary opening sessions, the three panels, the four commissioned 
paper sessions, and a summing-up session completed the program. The big 
question remained as to how the papers, the program, and the participants would 
interact in the inspirational retreat environs of the Wingspread Conference 
Center.

Summing up: Wingspread would make it work …
Was the task ambitious or hopeless? Could such a diverse group of thirty-one 
scholars from more than a dozen disciplines hold a productive conversation on 
two rather disconnected components of education? The commissioned papers 
were extraordinary, due largely to the talents and knowledge of the authors rath-
er than guidance from the steering committee, and the papers covered sufficient 
intellectual ground to underwrite a conversation. The program was set, again 
with minimal guidance from the steering committee on the contents of the vari-
ous sessions. In the end, the ingredient that would provide seasoning sufficient 
for success was the environs of Wingspread4. The first words in the program 
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booklet provided the key: “The setting at Wingspread is designed to reduce 
outside distractions to allow you to focus on the conference issues at hand.” 
Wingspread would provide some of the magic that would make this work-
shop on QL and teacher education fit its model of “small meetings of thought-
ful and rigorous inquiry convened in an atmosphere of candor and purpose.”  

Needless to say, issues in QL and teacher education constitute an agenda 
for decades, and a two-day workshop—even in an idyllic and inspirational 
setting—can only prompt and guide further work. In the article following this, 
Lynn Steen will focus on what the workshop produced from these and other 
possibilities.

As the foregoing indicates, developing the workshop involved the attention 
and work of several people. First, the steering committee members listed in the 
second endnote and in the front matter of this volume molded the program 
and commissioned the papers. The commissioned papers were reviewed by 
at least two workshop participants and at the workshop itself by participants. 
The high quality of these papers is due to the creativity of the authors and the 
care and insights of the reviewers. Each workshop participant was assigned a 
role as session leader, presenter or reporter, and all were carried out splendidly 
with minimal guidance from the steering committee. My appreciation goes to 
the Johnson Foundation, its emeritus president Boyd Gibbons, who got me 
involved in this venture, its current president Roger Dower, and staff members 
Carole Johnson and Barbara Schmidt. In addition to subsidy by the Johnson 
Foundation, the workshop was made possible by the NSF-funded PMET project 
of the MAA. The PMET coordinator at the University of Arkansas, Tami 
Trzeciak, handled all the pre-workshop communications with participants and 
the Johnson Foundation staff. Working with co-editor Lynn Steen is always 
educational and pleasant, and the MAA programs and editorial staff—Michael 
Pearson, Elaine Pedreira, and Beverly Ruedi—made the volume happen. 
Thanks.

Special thanks are owed to Robert Orrill whose curiosity, persistence, and 
deceptively simple questions which defied simple answers launched the QL 
movement that has now spread to multiple disciplines, scores of campuses, and 
thousands of students.
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Reflections on Wingspread Workshop 

Lynn Arthur Steen∗

St. Olaf College

If King Henry the 8th had six wives, how many 
wives did King Henry the 4th have?

— Overheard at Wingspread

“Quantitatively oblivious” is how Rhodes Scholar and historian Robert Orrill 
describes the condition in which his extensive humanities education left him. 
It also describes roughly half the young adult population of the United States 
today—although for very different reasons. The experts from a wide variety of 
fields who gathered in June 2007 at the Wingspread retreat center in Racine, 
Wisconsin, agreed on little else but this: it is dangerous for democracy if most 
of its citizens are quantitatively oblivious.

In this brief reflection I call attention to a few of the dozens of issues, 
concerns, and suggestions that emerged at this workshop, many of which 
are elaborated and documented in the reminder of this volume. Two special 
issues dominated the discussions: the relative roles of mathematics vis a vis 
other disciplines in the development of numeracy, and the potential of teacher 
preparation as a tool for enhancing numeracy. The issues are subtle, as Orrill’s 
own reflection attests.

———
* Lynn Arthur Steen is special assistant to the provost and professor of mathematics at St. Olaf 
College in Northfield, Minnesota. Steen has served as an advisor for Achieve, Inc. concerning 
K–12 mathematics, as executive director of the Mathematical Sciences Education Board, and as 
president of the Mathematical Association of America. He is the editor or author of many books 
on mathematics and education including Math and Bio 2010: Linking Undergraduate Disciplines 
(2005), Mathematics and Democracy (2001), On the Shoulders of Giants (1991), Everybody 
Counts (1989), and Calculus for a New Century (1988). Steen received his Ph.D. in mathematics 
in 1965 from the Massachusetts Institute of Technology.
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In addition to giving his own testimony on the relation of humanism and 
numeracy, Orrill cites evidence from leading twentieth century humanities 
scholars to suggest that “an aversion to numbers” is deeply rooted in humane 
studies. Much of this aversion grew out of unease at society’s increasing 
“trust in numbers,” to use historian Theodore Porter’s apt expression (Porter, 
1995). As the standard of civil and political evidence transitioned throughout 
the twentieth century from the arts and humanities to the natural and social 
sciences, quantification increasingly replaced classical verities as the foundation 
of accepted truths. The pretense of objectivity in social measurements rankles 
humanists still. Echoes of opposition to quantification can be heard throughout 
higher education even today as faculty argue with administrators and politicians 
about means of assessing the outcomes of liberal education.

Humanists are not alone in their aversion to numbers. It may come as 
a surprise to some that many mathematicians have a similar temperament. 
Berkeley mathematician and educator Alan Schoenfeld called his mathematics 
education from grade school through Ph.D. “impoverished”: no authentic 
applications, no data other than artificial numbers, no communication other 
than formal proofs (Schoenfeld, 2001). Although some mathematicians do 
study numbers, most do not. Instead they employ abstractions in which only 
the properties of numbers, not the numbers themselves, matter.

My own experience is similar to Alan’s. I recall a graduate school class in 
which the professor in the course of a single hour ran through the entire Latin 
and Greek alphabets as well as the first few letters of the Hebrew alphabet, 
but the only numbers in sight were 0, 1, and π. In many years of teaching 
mathematics to undergraduates, including many future high school and college 
teachers of mathematics, numbers were rarely of central importance. Since the 
time of the Greeks, mathematics has been largely about definitions, theorems, 
and proofs, not numbers, contexts, or measurements. Our heritage is the same 
as the humanist’s, and our disposition is not so much different.

So why, you may wonder, did I become involved with the small band 
of rebels who have been agitating on behalf of quantitative literacy (QL)? In 
the early 1990s I was a member of the College Board’s advisory committee 
for mathematics, and for reasons such as those I just outlined we all were 
mostly oblivious to quantitative literacy. But then the College Board’s advisory 
committee for science began to worry about whether their exams demanded 
enough mathematical and quantitative acumen to meet the increasing demands 
for quantification in college science courses. So they asked the mathematics 
committee for advice on the nature and level of quantitative literacy that would 
be appropriate to include on the College Board’s various science tests.

This question caused some consternation among the mathematicians 
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and mathematics educators on our committee, not least because our first 
approximation to an answer was mostly disjoint from the topics that we 
had been advocating be on the College Board’s mathematics tests. We were 
confronted with a dilemma that is still unresolved and that could be heard in 
many discussions at the Wingspread workshop: Is QL part of mathematics or 
isn’t it? If so, why isn’t it taught and learned? If not, who should teach it?

The College Board’s response was to publish a series of essays called 
Why Numbers Count (Steen, 1997) that offered a variety of professional views 
focused, at least indirectly, on the science committee’s original question. The 
leader of this College Board effort was none other than Robert Orrill, no longer 
quantitatively oblivious. Subsequently, with support from the Pew Charitable 
Trusts and the Woodrow Wilson Foundation, Orrill led a project intended to 
make QL a focus of faculty debate on college campuses across the country. The 
Wingspread workshop is the latest in a series of meetings related to QL that in 
various ways spun off from these early initiatives.

Has anything changed?
Essays in the current volume—the anchors of the Wingspread workshop—are 
as diverse and contentious as any of their predecessors. One noticeable change 
is that QL explorers have moved beyond debates about the definition of QL, 
not because they reached consensus but because they recognize that develop-
ment of QL programs is more important (and is also an effective way to clarify 
definitions). Another change, clearly evident at Wingspread, is that individuals 
with broader experiences are now awake to the importance of QL and to the 
potential for connecting to other educational frontiers such as collegiate as-
sessment, general education, and interdisciplinary initiatives. At Wingspread, 
linkages with teacher education played a central role.

In writing about the licensure of teachers for QL, Frank Murray unwraps 
layers of formidable complexity in order to disarm anyone who may imagine 
or suggest simple solutions. Teachers of QL need an extraordinarily diverse 
set of attributes, including confidence to tackle uncharted quantitative topics, 
operational skill in mathematical procedures, ability to solve problems that 
require both deduction and estimation, and experience in contextualizing 
economic, political and social data. The traditional resource that provides 
subject knowledge for teachers is the undergraduate major. Yet we now 
know that even in well established fields such as mathematics, the traditional 
academic major does not induce in students the kind of deep understanding 
necessary for a teacher to respond productively to creative conjectures that 
students readily offer. For a new field like QL—if it even is a “field”—without 
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a major, it appears as if one may need either a miracle or a revolution.
Murray suggests several potential revolutions, including an interdisciplinary 

major made up of minors from several fields; a major focused on the 
epistemology of different fields; a great books major centered on seminal texts 
(not textbooks!) in several fields; and a cognitive psychology major focused 
on how the mind matures in comprehending different kinds of knowledge. 
It will take years of trials to see how well any ideas such as these may do in 
developing for the kind of QL knowledge that teachers need to be ready with 
apt examples, useful analogies, and constructive questions.

The other traditional component of teacher preparation, typically more 
contentious, is the cluster of courses and experiences (practice teaching) that 
focus on pedagogy more than content. Murray recounts the appeal of naïve 
teaching, that is, the natural instinct that all people have to teach what they 
know to others, to justify restraints on this component of teacher education.  
Since QL has not ever been an organized discipline, and is often overlooked 
by subjects that are organized as disciplines, much of what people learn in this 
domain comes from such naïve sources. Evidence shows, however, that teachers 
operating in this instinctive mode (primarily showing and telling) tend to have 
low expectations for students of different backgrounds and are inattentive to 
higher order understanding of the kind characteristic of QL. Untrained teachers 
have great difficulty, for example, with recognizing the value of productive 
student efforts that nonetheless yield incorrect results. 

For a variety of reasons, public pressure for more and better teachers 
coupled with skepticism about the education establishment has led to a 
multiplicity of approaches to teacher licensure. In this environment, Murray 
argues, the effort to increase the level of quantitative literacy in the schools 
will surely fail unless all aspects of licensure are addressed and coordinated, 
including clarity about the assessable features of numeracy, establishment 
of an appropriate undergraduate major, new requirements for the teaching 
license, redesign of license tests, recognition in accreditation and state 
approval standards, and incorporation in the state’s curriculum assessments. 
Without these, Murray warns, “the policy levers provided by teacher education, 
licensing, credentialing, and accreditation are relatively powerless to provide a 
structure that will support QL.”

Is there any hope?
Murray’s analysis pretty much buries the option of QL as a thriving K–12 
discipline. However, this may not matter much since most QL advocates have 
not sought to go down that road. The predominant recommendations for QL 
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seem to be either cross-disciplinary (e.g., like writing across the curriculum) or 
sub-disciplinary (e.g., within mathematics, rather like statistics now often is). 
But Murray appears to say more, namely, that unless QL takes on all the trap-
pings of a discipline—standards, majors, assessments, licensure—it cannot 
grow within the K–12 scene.

Others seem more hopeful. For instance, Shoenfield—having recovered 
from his “impoverished” mathematics education—now believes that QL 
and the contents of school mathematics should be “largely overlapping.” 
Richard Scheaffer, former president of the American Statistical Association, is 
“convinced” that quantitative literacy has a rather large overlap with statistics 
education, especially as the latter is being defined and developed for the 
K–12 mathematics curriculum (see, for instance, www.amstat.org/education/
gaise/). Henry Kepner, president-elect of the National Council of Teachers of 
Mathematics, reports that QL is largely consistent with current mathematics 
standards and curricula, largely because data analysis, statistics and probability 
“has entered the main stream” of school mathematics. Kepner notes, however, 
that QL depends far more on the processes of mathematics—reasoning, 
communication, representation, connections, and problem solving—than do 
typical mathematics standards (which focus on skills and content).

Physicist-turned-mathematics-educator Hugh Burkhardt argued similarly 
at Wingspread in his paper on QL for all. He sees QL as a “major justification” 
for the large slice of curriculum time given to mathematics and argues that 
QL can be a powerful learning aid for mathematical concepts, particularly for 
those who are not already high achievers. Moreover, he avers, teaching QL 
well is mathematically demanding, even for mathematics teachers; those less 
well-prepared “could not cope.”

Following much the same line of thinking as Murray, Burkhardt notes 
further that it is extremely difficult to establish and sustain cross-curricular 
teaching. “If QL is not taught in mathematics, it will not happen.” However, 
he warns against the common pro-QL argument made by some mathematics 
educators that for most students, thinking mathematically about problems from 
everyday life offers powerful support for sense-making in mathematics:

However true, this is an extraordinarily inward-looking view. For me 
and, I believe, for most people, the practical utility of being able to think 
mathematically about practical problems is the prime motivation for studying 
mathematics; its inherent beauty and elegance are merely a welcome bonus 
(author’s italics).

Regrettably, Burkardt continues, among teachers of mathematics, there is too-
often an unfortunate correlation between “knowing more mathematics and 
having an inward-looking view of it.”
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In his paper on critical thinking about public issues, sociologist Joel Best 
makes a similar argument about inward-focused mathematics, but draws from 
this observation an opposite conclusion. According to Best, educators teach 
mathematics as a series of what he calls increasingly complicated “calculations,” 
by which he means all of the methods (e.g., arithmetic, equations, deduction) 
by which mathematical problems “are framed and then solved.” 

Because mathematics instruction is organized around principles of calculation, 
calls for quantitative literacy tend to assume that students are not sufficiently 
adept as calculators, and that they need to improve their calculating skills, 
that they either need to beef up their abilities to carry out more sophisticated 
calculations or that they need to become better at recognizing how to apply 
their abstract calculation skills to real-world situations. 

This preoccupation with calculation is Best’s explication of the inclination 
towards inwardness that worries Burkhardt. Whereas Burkhardt seeks to draw 
QL into mathematics to save it from its inward tendencies, Best argues that 
QL requires issues of “construction” that move well beyond the boundaries of 
mathematical calculations:

Humans depend upon language to understand the world, and language is 
a social phenomenon. In this sense, all knowledge is socially constructed. 
… In particular, numbers are social constructions. Numbers do not exist in 
nature. Every number is a product of human activity: somebody had to do the 
calculations that produced that figure. Somebody had to decide what to count, 
and how to go about counting. 

This is not a mundane observation, says Best, especially when numbers 
frame public issues. Understanding such figures requires far more than 
calculation (that is, mathematics). To be quantitatively literate, students need 
to appreciate the process of social construction. Needless to say, this is not a 
skill in which mathematics teachers are trained and few are good at it.

Several Wingspread participants (mostly non-mathematicians) appeared 
to share this sentiment. “Why associate QL with mathematics?” asked 
psychologist Neal Lutsky. “Mathematicians are least well prepared to deal 
with the meaning of socially constructed numbers, which is the essence of 
QL.” Indeed, the much-heralded goal of teaching mathematics in context is 
by definition out of context when done in a mathematics class. It is also very 
difficult to do there since mathematics students come from all sorts of different 
contexts. Perhaps contextual teaching—the essence of QL—really belongs 
where the context is the primary subject being taught.

Assessment expert Richard Shavelson adds yet a further caution. One 
suggestion often heard at Wingspread (and earlier) is to add QL to teacher 
education programs. Shavelson warns that even if it could be achieved, this 
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proposal does not get at the heart of the problem, in part because “K–12 
teachers are not the cause of the problem.” The proposal, he claims, ignores the 
current policy and social contexts of education in the U.S. The policy context 
is one of high stakes testing:

This form of accountability drives what gets taught by teachers in the 
classrooms. Unless QL becomes a central focus of what is meant by 
mathematics achievement, and this is very unlikely, it will be put aside even 
if we accomplished our goals with teachers.

The social context, Shavelson continues, is one of a society that largely 
does not possess, foster, or support QL. Most U.S. adults are not quantitatively 
literate. Many believe that mathematical and quantitative abilities are 
determined by birth (some have the “right stuff” and others do not). Worse, 
recent developmental data cited by Shavelson suggests that resistance to 
scientific and quantitative reasoning will arise and persist in children when 
such reasoning leads to conclusions that clash with prior expectations or with 
views championed by trusted adults. Thus it is that society’s aversion to things 
quantitative is transmitted from generation to generation.

All these strands, and more, lead Shavelson to suggest that the proper 
response to the crisis of QL is not a special focus on QL for prospective and 
practicing teachers, but a broad focus on QL for all students, especially at the 
introductory college level. This route, indirect rather than explicit, will perforce 
include future teachers. Moreover, aspects of embedded QL are included in one 
of the most promising new tools for assessing liberal education, namely the 
Collegiate Learning Assessment (see www.cae.org/content/pro_collegiate.htm).

Interestingly, Orrill makes a similar suggestion with regard to students and 
teachers of the humanities: instead of forcing on them what their culture has 
traditionally viewed as repugnant, proponents of QL should invite humanists 
to use their own texts as a foundation for revisiting their stance toward 
quantification:

Humanists are more likely to enter the conversation—and remain involved—
if they can begin on familiar ground. At the same time, this also would bring 
QL into contact with documents and texts about which it so far has had little 
to say. Here, then, might be found the makings of a genuine conversation.

As Orrill recognizes, no one can predict whether such a conversation would 
be a productive undertaking. Current circumstances, he believes, suggest that 
the time is right to try. “Many humanists now are calling for a thoroughgoing 
reconsideration of humanistic practice; this self-questioning could open new, 
if still untried, paths through the academic hedgerows.”
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But can we communicate?
A second major theme that emerged from many Wingspread discussions was the 
obvious observation that quantitative literacy is a type of literacy—or in mod-
ern jargon, communication. Indeed, “communicating effectively about quanti-
tative topics” emerged as a high priority need from virtually every source that 
economist Corrine Taylor studied in her analysis of what the business world 
wants in the way of QL. These sources expressed other needs as well, foremost 
being the habit of guessing and checking for reasonableness, known informally 
as “thinking for oneself,” and experience with messy “cases” requiring a deci-
sion rather than only textbook problems with specific correct solutions.

One might say that mathematics is to QL as template problem solving 
is to authentic decision making. In the former, textbook exercises provide 
exactly the information needed to solve the problem—no more and no less; 
in the latter, the relevant data are typically both incomplete and contradictory. 
Many school mathematics teachers, by their own testimony, decided to pursue 
mathematics because they like to follow rules, and are most comfortable with 
the precision and definitiveness of a good mathematics problem. To help their 
students become quantitatively literate, mathematics teachers will need to 
encourage argument and discussion, just like English and history teachers do. 
That’s a tall order. But to the extent that it succeeds, it would also help students 
become better mathematicians.

Discussion and debate about messy cases would surely help develop 
the strong communication skills about quantitative issues that experts say 
are keys to success in the business world. According to Taylor’s findings, 
businesses strongly believe that their success depends on individuals “who can 
communicate with others on a team about assumptions, techniques, results, 
and decisions.” Retired General Electric engineer William Steenken affirmed 
the importance of these skills in engineering also. “It’s not only differential 
equations, but the ability to talk precisely and clearly about their work.” 

Psychologist Lutsky makes a similar case in his paper “Arguing with 
Numbers.” His foundation, however, is not the needs of business but of liberal 
education. Based on work he and his colleagues have done with students at 
Carleton college, Lutsky opines that “the construction, communication, and 
evaluation of arguments” is a fitting context for quantitative literacy. In many 
situations, quantitative reasoning is an essential ingredient in the “framing, 
articulation, testing, principled presentation, and public analysis of arguments.” 
In even more instances, QL is supportive although not central in making or 
critiquing an argument. Thus QL becomes an imperative for liberal education, 
both in high schools and colleges.
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Many have suggested that “writing across the curriculum” is an appropriate 
model for QL: it recognizes the multi-disciplinary character of QL, honors 
the contextual differences among disciplines, and is a practical way to enlist 
relatively large numbers of advocates from different departments. The success 
of writing across the curriculum is an inspiration to those who hope QL will 
follow in these footsteps. Indeed, the National Numeracy Network (see www.
math.dartmouth.edu/~nnn) is loosely modeled after the National Writing 
Project, a nationwide system of local coalitions that has provided effective 
support for writing across the curriculum for over a quarter century. In 2008, 
the NNN launched a new electronic journal Numeracy: Advancing Education 
in Quantitative Literacy (see services.bepress.com/numeracy).

While not disputing the possibilities of QL across the curriculum, Lutsky 
adds a unique twist: instead of working across the whole curriculum, focus on 
the teaching of writing: 

Quantitative literacy can be usefully situated in the context of argument, in 
the presentation of statements supporting claims. In this sense, arguments are 
not only reasons to take one position or another on a contentious issue but 
address … claims about the nature of a phenomenon or the importance of a 
topic. Teaching students how to identify and find the constituent elements of 
an argument, how to organize arguments systematically, … how to present 
arguments clearly and meaningfully, … how to address their own arguments 
reflectively, and how to evaluate others’ arguments are fundamental to 
education at all levels and in almost all disciplines.

By examining a wide variety of papers that college students wrote for 
courses across the curriculum, Lutsky and his colleagues discovered that a 
third of these papers failed to use quantitative reasoning when it should have 
been central to the analysis, and nearly nine in ten failed to use QL when it 
was peripheral but of potential benefit to the argument. Clearly, there is much 
potential for QL within courses that stress written (and oral) analyses.

Statistician Milo Schield puts his finger on one possible reason why so 
many students write papers absent potentially helpful quantitative reasoning: 
most do not know how to express simple quantitative ideas in clear English. 
Many will confuse, for example, the percentage of males who are smokers 
with the percentage of smokers who are male. In one study, 20% of college 
students were unable to read a 5th grade pie graph showing percentages of 
smokers divided by religion (protestant, catholic, other). Notwithstanding the 
ubiquity of tables and graphs in popular media such as USA Today, translating 
the meaning of numbers and percentages that appear in such tables into correct 
English is beyond the ability of all but a small minority of even college-
educated adults. It seems plausible to infer from the widespread inability to 
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express correctly the meaning of such numbers a corresponding inability to 
understand their meaning.

Schield’s paper is one of two devoted to fractions, the tormentor of millions 
of school children (not to mention of educated adults). He focuses on the needs 
of the 40% of college students who major in non-quantitative subjects. These 
students, he notes, are more likely than their quantitatively-oriented classmates 
to become journalists, policy advocates, lawyers, opinion makers and political 
leaders, thereby influencing local and national policies. Schield advances the 
rather radical proposition that to improve quantitative literacy and attitudes 
towards mathematics, it makes sense to deemphasize fractions for these students 
and focus more on percentages and rates. He asks, pointedly, why should they 
be burdened with mastering the arithmetic of mixed fractions (1/3 + 2/7) when 
so many cannot even translate a simple proportion into clear English? Isn’t it 
more important to emphasize understanding the multiple representations of 
fractions in tables, graphs, proportions, percentages, and ratios than to focus on 
manipulating numbers which for all too many students demonstrably convey 
no meaning?

Good questions, all. Applied mathematician Alan Tucker empathizes. Too 
many students, he notes, fall off the ladder of mathematical learning in the 
transition from whole number arithmetic to fractions. Like Schield, Tucker 
offers his own catalog of horrors, such as the fact that given a choice of 1, 2, 
42, or 45 as approximate values of 19/20 + 23/25, a majority of U.S. eighth 
graders chose 42 or 45. These students, Tucker observes, “did not think of a 
fraction as a number.” 

Whereas Schield worries that students do not know what a fraction means, 
Tucker worries that that they do not know what it is. That distinction about 
summarizes the archetypal difference in approaches that distinguish social 
scientists from mathematicians. Students, of course, need to know both what 
a fraction is and what it means. For adults, it is probably more important that 
they remember what it means.

Tucker urges that children be introduced to fractions first via unit 
fractions such as ½, ⅓, and ¼. For young children, he says, unit fractions 
evolve naturally from counting numbers: if a pie is divided into equal fourths, 
the pieces when counted yield a total of 4. In this way, unit fractions can be 
thought of as a type of counting number known as reciprocals. They fit easily 
into the various counting activities in which young children engage as they 
learn about numbers.

Then at the earliest appropriate age, Tucker says, children should be told 
that a fraction is a “number that is an integer multiple of some unit fraction.” 
For example, ¾ means 3 × ¼, where ¼ is a number with the property that 
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four of them add up to 1 (a “unit” in mathematical jargon). Of course, in real 
elementary classrooms, these spare definitions would be supported by a variety 
of examples from everyday life such as telling time, making change, cooking, 
sharing portions, and measuring small quantities.

For mathematicians, the decision to define fractions in terms of unit 
fractions solves a major conceptual problem, namely, establishing that a 
fraction is a number. The logical chain from counting number to unit fraction 
to (ordinary) fraction satisfies the mathematician’s sense of definitional clarity. 
Some children—not all, but an important cohort—will also appreciate this 
clarity. Others, at least, may find that it helps avoid unnecessary confusion.

Tucker identifies a second less obvious advantage of defining fractions 
this way: it makes clear that the numerator and the denominator of a fraction 
represent different things. Numerators are standard counting numbers, while 
denominators are a totally new quantity, namely, reciprocals. This distinction, 
the theory goes, will help students overcome the strongly held belief that 
numbers must be whole numbers, and that fractions are not numbers but rather 
just part of something.

A third advantage elucidated in Tucker’s paper, is that unit fractions help 
clarify the distinction between fractions and division: a fraction is a number 
that may be the answer to a particular division task. Confusion arises because 
after the early grades, we use the fraction notation (¾) to mean both the number 
¾ and the arithmetic problem 3 ÷ 4.

Finally, and perhaps most important for QL, unit fractions focus attention 
on the role of units (e.g., miles, feet, inches) as mediator between an abstract 
number (¾) and a real context (¾ mile), and on the way rates are used to 
convert from one type of unit to another. Changing from miles to feet is much 
like changing from thirds and fourths to twelfths when seeking a common 
denominator in order to add ⅓ + ¼.

Despite their vastly different approaches, Schield and Tucker share a 
common concern that current schooling is strikingly deficient in achieving a 
primary goal of middle school mathematics, namely to convey the interrelated 
meanings of fractions, percents, proportions, decimals, ratios, and rates. For 
several centuries many of these topics were collected under the “rule of three” 
(given any three numbers, find the fourth); until the beginning of the twentieth 
century, the rule of three (and some Euclid) was all the mathematics expected 
of students entering American colleges. 

Kepner noted that one reason for the decline in comprehension of these 
topics by high school graduates in the last half century is that teachers taught 
them according to the different algorithms required for calculation rather than 
as different perspectives on a common topic. No wonder most adults do not 
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recognize fractions, ratios, and percents as three representations of the same 
thing: even when well learned, they appear as they were taught: as three distinct 
notations, each with distinct rules for calculation. One can see from this tidbit 
of pedagogical history why the “calculation” perspective, as Best put it, is 
totally inadequate to meeting the interpretive needs cited by Taylor, Schield, 
and Tucker.

So what’s next?
Although mathematics plays a central role in the relentless recent increase in 
student testing, no one ever seems to ask why. Parents and politicians take for 
granted that mathematics is essential for work, for college, and for informed 
living. Even the once-oblivious Orrill now argues that 

if individuals lack the ability to think numerically, they cannot participate 
fully in civic life, thereby bringing into question the very basis of government 
of, by, and for the people (Orrill, 2001).

Whereas humanists in the late 19th century warned against the idolatry 
of large numbers that politicians used to praise the ever-expanding American 
life, a century later we find numbers have penetrated every aspect of social, 
political, economic, and cultural life. Now not only our economy but also our 
democracy depends on numbers.

But is the numeracy we need to guard our democracy the mathematics 
found on required school tests? I think it is fair to say that virtually every 
Wingspread participant would answer this question in the negative, though 
not all for the same reason. Some would say the tests do not reflect good 
mathematics; others that good mathematics is not effective numeracy; still 
others that numeracy cannot be tested in this manner. But every participant 
would also recognize that teachers and students have little choice but to focus 
on the high-stakes tests as they are. This is what Shavelson calls the ignored 
policy context of education.

Fortunately, higher education has so far escaped the deluge of narrowly 
focused tests, and the assessment options currently being explored (e.g., CLA) 
are very compatible with the goals of quantitative literacy. Even though some 
might wish that students’ QL needs would be met by their secondary education, 
it seems clear from the analyses at Wingspread that the most creative and 
effective forces for QL will be those in postsecondary education. 

Higher education is in many ways exactly the right place for QL to 
develop and diversify. As a nation we are blessed with an extraordinary variety 
of institutions—public and private, large and small, two and four year, college 



Reflections on Wingspread Workshop 2�

and university—all of whom actively innovate in order to compete for students. 
Many very different QL projects are already underway in postsecondary 
institutions. I would anticipate that as ideas from Wingspread become known 
more widely, some of the issues debated there will take shape in the form 
of pilot programs on different campuses. The infrastructure to support this 
work is already in place—within mathematics, via the MAA’s Special Interest 
Group for QL (see www.maa.org/sigmaa/ql), across disciplines via the National 
Numeracy Network, and on the web via the new electronic journal Numeracy.  

Of course, higher education is not without its own impediments. Academic 
silos, entrenched curricula, state articulation agreements, academic guild 
requirements—not to mention recalcitrant tenured professors—will keep the 
campus QL rebels well occupied. They will not have the luxury of a “clean slate” 
as the earlier Wingspread meeting had hoped. But they now have momentum: 
energetic leaders, active programs, and budding professional associations.

Should QL be part of a college’s mathematics requirement or organized 
across the curriculum with “Q” courses in many departments? Might it be 
integrated into Comp 101 as part of every freshman’s initial exposure to 
college writing? Do students in non-quantitative tracks need QL, or do their 
current requirements suffice? What should be done for college students who do 
not know what fractions are or mean?… The list of questions is endless, more 
than enough to fill the agenda of the next numeracy workshop.
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If we seek to enhance the quantitative reasoning of the American public, not 
only do we need to be able to say what quantitative reasoning is, we also need 
to know how to teach for it and how to measure progress toward the QR goal. 
My focus is on assessment, but inevitably I also need to address definitional 
questions. Moreover, teaching and assessing go hand-in-hand. So what is said 
about assessment has application to teaching (and vice versa). 

From an assessment perspective the first question that arises about QR is: 
“What is the construct to be measured?” Or, “What is the ‘theory’ or ‘model’ of 
QR from which an assessment emanates?” This question conjures up over 100 
years of study of quantitative reasoning. Psychometric, cognitive, and situated 
theories all have something to say about the question. An early task, therefore, 
is to set forth a simple assessment framework that provides the structure for 
the paper—what is to be measured, with what tasks, and with what inferences? 
Once the framework is sketched, I will introduce definitional questions and set 
forth a particular definition that constrains what we might assess and how we 
might assess it. 
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With a working definition of QR in hand, the assessment question turns to 
what kinds of tasks might be used to measure the construct. Two approaches 
to measuring QR—one with roots in behaviorism and the other from cognitive 
and situative perspectives—illustrate different underlying conceptions of 
learning, knowing, and performing. They lead to different answers to the 
question of what tasks should be used to measure QR. As we will see, certain 
kinds of tasks are likely to elicit quantitative reasoning in a manner consistent 
with our definitional view, while other kinds of tasks are less likely to do so. 
One approach that I like—akin to cognitive/situative orientations—is reflected 
in the new Collegiate Learning Assessment (CLA). Consequently, I describe it 
in some detail to illustrate one important direction for assessment of QR that 
may fit what the field is looking for. 

With the assessment built, the final question that arises is, “How justifiable 
is the inference from test information to students’ or teachers’ level of 
quantitative ability?” Due to space limitations, I only note but do not discuss 
the need to amass empirical evidence and the kinds of evidence that support 
a QR interpretation. In concluding, I examine from a variety of perspectives 
the potential for teacher preparation and enhancement to improve QR, thereby 
raising questions as to whether teacher education in QR is the most effective 
approach to deal with this 21st century challenge.

Approaching quantitative reasoning through assessment
There is a growing consensus that to function effectively in the 21st Century, 
Americans need to be “quantitatively literate,” that is, be able to think and 
reason quantitatively when the situation so demands. And by implication, 
Americans certainly need to be able to quantitatively reason better than they 
can today. This view is clearly expressed in the invitation letter for this confer-
ence: “The goal of the conference is to explore educational solutions to the 
increasing quantitative reasoning demands on US residents.”

If we seek to enhance the quantitative reasoning of the American public, 
we need not only to be able to say what quantitative reasoning is, we also need 
to know how to teach for it and how to measure progress toward the QR goal. 
This paper focuses on assessment of quantitative reasoning. But assessment, 
strangely enough, is a good road into the topic because it forces us to be clear 
about what we mean by QR, what kinds of tasks or activities would elicit QR 
(both in the classroom and on the assessment), and what kinds of evidence is 
needed to convince ourselves we are measuring the “right stuff.”

Perhaps surprisingly, the way assessment developers approach the 
development of measures of any construct like QR is instructive not just for 
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assessment, but also for teaching and learning. Development work is guided by 
an assessment triangle (NRC, 2001) shown in Figure 1. The construct vertex 
represents the “thing” or “concept” or “construct” we want to measure. In our 
case, the construct is quantitative reasoning. That is, we want to infer the level 
of quantitative reasoning displayed by an individual or group of individuals 
based on our assessment. To do so means we have to begin by defining what 
we mean by QR. Such a definition is not set in stone. Rather, as we gain 
experience teaching QR and empirical evidence about the adequacy of our 
assessment of QR, we may very well modify the definition. But such a working 
definition is a starting point.

The observation vertex of the 
triangle represents the kinds of 
activities we believe would permit 
an individual or group to display 
QR. The definition of the construct 
helps define a universe of possible 
activities—tasks and how they might 
be responded to—that we might 
use to assess QR… or to teach QR! 
The definition also rules out some 
activities that we would not consider 
as counting as eliciting the kind of QR 
we have in mind. Typically we do a 
kind of task analysis to insure, at least 
logically, that the tasks/ responses that form the activities on the assessment are 
drawn from the universe of QR activities that we intend to draw inferences to, 
based on assessment scores.

Finally, the interpretation vertex focuses on the inferences we make from 
a sample of activities to the universe of activities that we want to know about 
a person in order to capture his or her QR. By interpretation is meant the basis 
for scoring performance and the chain of reasoning—logical, cognitive, and 
statistical—that links the scores on the assessment to the construct of interest, 
QR. Indeed, we do not know what an assessment measures unless we know what 
the tasks are, how people are asked to respond to those tasks, and how those 
responses are scored. And even then we need logical, cognitive, and statistical 
evidence that supports our interpretation that we are really measuring the QR 
we set out to measure. Given limited time, this vertex will not be discussed 
herein further.

I hope by now I have convinced you that the assessment process demands 
a great deal of reasoning, especially quantitative reasoning! 

Construct

Observation Interpretation

Figure 1. The assessment triangle.
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Definitions of quantitative reasoning
Historically, within psychology and education, there have been three ap-
proaches to defining QR: psychometric (behavioral roots), cognitive (mental 
process roots) and situative (social-contextual roots). Each sheds light on what 
we might or might not mean by QR. And, as we will see, current definitions 
of QR in the mathematics QR community overlap some combination of the 
cognitive and situative here.

Psychometric Approach
The psychometric approach begins with a “mini-theory” of what QR might be 
and then builds tests to match that theory. It then tests the theory empirically, 
looking for patterns of correlations among test scores such that tests measur-
ing QR should correlate higher with each other than with tests of, say, verbal 
or spatial reasoning. This tradition has been ongoing for more than 100 years. 
There seems to be consensus that there is strong evidence for a “QR factor” in 
the sense that people’s performance on QR tests can be distinguished clearly 
from their performance on other tests. QR “… requires reasoning based on 
mathematical properties and relations. The reasoning processes may be either 
inductive or deductive, or some combination of them” (Carroll, 1993, p. 239). 
QR tests have titles such as “Arithmetic, Necessary Arithmetical Reasoning 
and Mathematical Aptitude.” Carroll goes on:

Typically these tests present a variety of mathematical reasoning 
problems such as word problems (solving verbally stated mathematical 
problems), number series, and problems requiring selection of 
appropriate arithmetical operations. Generally, the amount of actual 
numerical computation required is small. [S]cores are expected to 
depend mainly on the level of difficulty in the problems that can be 
performed.

To put QR in context, a figure generated by Snow and Lohman (1989, 
p. 318, Figure 3.13) and adapted by Gustafsson and Undheim, (1996, p. 201, 
Figure 8-5) is helpful (Figure 2). This “dartboard” representation of human 
cognitive abilities shows the bull’s eye to be general mental ability. Radiating 
out from the center are verbal, spatial, and quantitative reasoning. Let us focus 
on the QR piece of the board (or slice of pie). As we move away from the bull’s 
eye toward the edge of the board, the tests of QR become increasingly like 
those tasks that might be taught in school and, consequently, most influenced 
by education. This said, those tests closer to the bull’s eye seem to best reflect 
what psychometricians think of as QR. 
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To get a better feel for some of these tests, questions from two QR tests 
are presented in Figures 3a, 3b, and 3c. The test question in Figure 3a, taken 

Example II. Chairs priced at $40 each are being sold in lots of 4 at 85% of the 
original price. How much would 4 chairs cost?

1 - divide and add 3 - subtract and divide
2 - multiply and multiply 4 - multiply and divide

One way to solve the problem would be to multiply $40 by .85 and then 
multiply this product by 4; therefore you shoud have put an x through the 
number 2. (Although some problems may be solved in more than one way, 
as with Example II, only the operations of one of these ways will be given 
among the options).
When 2 operations are given, they are always given in the order in which they 
should be performed.
Your score on this test will be the number marked correctly minus a fraction 
of the number marked incorrectly. Therefore, it will not be to your advantage 
to guess unless you are able to eliminate one or more of the answer choices 
as wrong.

Figure �a. Necessary Arithmetic Operations Test

Figure 2. A schematic “dart-board” model of human cognitive abilities
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from the Necessary Arithmetic Operations Test (Ekstrom, French, Harman, & 
Dermen, 1976), falls close to the bull’s eye in Figure 2 while the test question in 
Figure 3b, taken from the Arithmetic Aptitude Test (Ekstrom, French, Harman, 
& Dermen, 1976), falls just beyond. For completeness, Figure 3c shows the 
Addition Test (Ekstrom, French, Harman, & Dermen, 1976) which falls at the 
periphery of the dart board and is closely tied to education and practice.

The questions in Figure 3a and b, then, appear to be consistent with 
Carroll’s claim that the tests do not place a high demand on computation but 
rather focus on reasoning with numbers, operations, and patterns. The last 
question focuses on numerical speed and accuracy, not what is meant by QR in 
the psychometric view of cognitive abilities.

You are to write your answers in the boxes below the problems. Several 
practice problems are given below with the first one correctly worked. 
Practice for speed on the others. This practice may help your score.

Practice Problems:

4 7 12 84 7 34 17 45 31 80
9 6 5 54 38 81 50 41 52 78
1 15 67 72 80 51 74 89 19 15

14

Your score on this test will be the number of problems that are added correctly.  
Work as rapidly as you can without sacrificing accuracy.

Figure �c. Addition Test

Cognitive Approach
Psychometicians have focused on observed performance or behavior in re-
sponse to a set of similar test questions seeking to understand the structure of

In this test you will be asked to solve some problems in arithmetic. Work each 
problem and put an x on the number in front of the answer that you choose.
Example: How many candy mints can you buy for 50 cents at the rate of 2 for 5 
cents?
 1- 1 2- 20 3- 25 4- 100 5- 125
The correct answer to this problem is 20. Therefore, you should have marked an x 
through the number 2 to indicate the correct answer
Your score on this test will be the number marked correctly minus a fraction of the 
number marked incorrectly. Therefore, it will not be to your advantage to guess 
unless you are able to eliminate one or more of the answer choices as wrong.

Figure �b. Arithmetic Aptitude Test
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abilities underlying consistency in responses to these questions. In contrast, 
cognitive scientists assume that performance on cognitive tests can be divided 
into component processes and ask about the cognitive operations that under-
lie the observed performance on psychometric and other tasks. Or, as John 
Anderson put it, “Most of the research in psychometrics has focused only on 
whether a person gets a question right or not. In contrast, information-process-
ing [cognitive] analyses try to examine the steps by which a person decides 
on an answer to such a question and the time necessary to perform each step” 
(2005, p. 447). Cognitive scientists’ goal is to extract sets of elementary pro-
cesses that underlie a wide range of cognitive functioning and thereby describe 
elemental cognitive processes. 

With respect to QR, cognitive scientists (actually seldom) ask, “What 
kinds of reasoning processes or steps are brought to bear in responding to QR 
type tasks? In what order? And for how long?” Unfortunately, QR has not 
been a focus of much cognitive research (although deductive and inductive 
reasoning have). One possible example (Figure 4) is cryptarithmetic (Newell 
& Simon, 1978, p. 143):

Although not the best 
example of QR, cryptarithmetic 
does provide a sense of the 
cognitive scientists’ approach 
in analyzing a potential QR 
task. They begin by setting 
forth the task environment—
the affordances and constraints 
of the problem—for a single 
problem. They then analyze, 
logically and mathematically, 
the possible solution paths 
for the problem. The next step in the analysis is to move from this intensive 
analysis of a single task to an extensive analysis which generalizes the rules 
for solving one problem to other problems that fall in the same domain. They 
then observe human performance on the task, asking problem solvers to “think 
aloud” to capture the reasoning processes underlying task completion. In this 
way, they map the “problem space” that the problem solver has constructed 
and the step by step processes used in problem solving. They may then test 
their conclusion by building and testing computer models of problem solving.

This approach, then, has less to say about constructing assessment activities 
than it does about how to determine whether the assessment activities tap the 

     DONALD     D = 5
 +  GERALD
       ROBERT

Here each letter represents a digit (0,1,…,9) 
and you know D = 5; no other letter equals 
5. What digits should be assigned to the 
letters such that, when the letters are 
replaced by their corresponding digits, the 
sum above is satisfied?

Figure 4. Cryptarithmetic
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kind of thinking—QR—of interest. Cognitive methods, such as the think-aloud 
technique, provide important means for examining proposed interpretations of 
assessments purporting to measure QR. 

Situated Approach
While psychometricians ask, figuratively, “How fast will the car go?”, and 
cognitive scientists ask “How does the engine make the car go fast?”, situativ-
ists ask “How is the car used in a particular culture?” Situativists ask about 
person-in-situation. They view performance as influenced in part by what the 
individual brings to a situation and in part by the physical and social situ-
ation—its affordances and constraints—in which that performance becomes 
meaningful. In their pursuit of understanding human abilities, including QR, 
they also want to know how a particular culture affects the development and 
use of these abilities. 

Indeed, situativists would probably frame the question of understanding 
QR a bit differently than has been done here. They would begin by not 
assuming that QR resides solely within the person but would view QR within a 
community of practice—e.g., those individuals engaged in culturally relevant 
activities in which reasoning quantitatively is demanded and the various 
resources of the community would be brought to bear on those activities. They 
would view a person accomplished in QR as having the capacity to engage 
others in working together to think critically, reason analytically and to solve 
a problem, for example. Cognitive abilities, from this perspective, reside in a 
community of practice.

To pursue the situative perspective further is a task for another time, as the 
capacity to assess performance poses a very real challenge for this perspective. 
And issues of credibility arise when those outside the situative community of 
practice are asked to buy into the way they assess performance.

That said it is possible to conceive of tasks that fit to some degree with 
this perspective. For example, the use of case studies in business which 
among other things demand QR, as Corrine Taylor (2007) points out, seems 
consistent with the situative perspective. QR is embedded in the larger set of 
real-world constraints and affordances and the problem solution depends upon 
them. Moreover, Bernie Madison’s (2006) characterization of QR in contrast 
to mathematics resonates with this perspective (Figure 5). QR, from his 
perspective, is carried out in real-life, authentic situations; its application is in 
the particular situation, one dependent upon context including socio-politics. 
The problems are ill defined, estimation is crucial, and an interdisciplinary 
approach is often needed
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Mathematics Quantitative Reasoning
Power in abstraction Real, authentic contexts
Power in generality Specific, particular applications
Some context dependency Heavy context dependency
Society independent Society dependent
Apolitical Political
Methods and algorithms Ad hoc methods
Well-defined problems Ill-defined problems
Approximation Estimation is critical
Heavily disciplinary Interdisciplinary
Problem solutions Problem descriptions
Few opportunities to practice
outside the classroom

Many practice opportunities
outside the classroom

Predictable Unpredictable

Figure �. Contrast between mathematics and quantitative reasoning.

Perhaps the following question, from Friedman’s statistics book, also falls 
within the situative perspective and what it means to reason quantitatively:

One of the drugs in the Coronary Drug Project was nicotinic acid. Suppose 
the results on nicotinic acid were as reproduced below. Something looks 
wrong. What, and why?

Nicotinic Acid Placebo

Group Number Deaths Number Deaths

Adherers   558 13% 1813 15%

Non-adheres   487 26%   882 28%

Total 1045 19% 2695 19%

Answer: About half of those getting Nicotinic Acid adhered to their treatment 
regimen whereas two-thirds of those getting the Placebo adhered to their 
regimen. This suggests something went wrong. For instance, the Nicotinic 
acid may have had unpleasant side effects or the Placebo tasted better. In 
short, it may not have been a true placebo. 

Note that the exercise does not involve formulas (other than noticing the large 
difference in adherence rates).

These examples of situated QR seem also to fit with the Mathematical 
Association of America’s notion of QR; all students who receive a bachelor’s 
degree should be able to:
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• Interpret mathematical models such as formulas, graphs, table, and 
schematics, and draw inferences from them. 

• Represent mathematical information symbolically, visually, numerically, 
and verbally. 

• Use arithmetical, algebraic, geometric, and statistical methods to solve 
problems.

• Estimate and check answers to mathematical problems in order to 
determine reasonableness, identify alternatives, and select optimal 
results.

• Recognize that mathematical and statistical methods have limits. 

The definition that seems most productive from a present day notion of QR is 
that of the situativists, perhaps augmented by a cognitive analysis. With this in 
mind, approaches to measuring QR provide striking contrast.

A possible approach to measuring quantitative reasoning
The tasks used to elicit quantitative reasoning and how that reasoning is ex-
pressed in overt performance derives from the construct definition. The psy-
chometric perspective’s definition of QR is helpful in thinking about the kinds 
of activities that might be included on a QR assessment—activities that require 
reasoning based on mathematical properties and relations. However, this per-
spective’s translation of the definition into assessment activities is constrained 
by the behaviorist notion that a complex task can be divided into component 
parts and then put back together again. Consequently, the questions found 
on psychometric tests are pretty much context free and posed in the form of 
multiple-choice test questions, as we saw in Figures 3a–c. This claim is rein-
forced by the GRE QR section (ETS, 2002). Carroll (1993) considers the GRE 
Quantitative scale to be prototypical of QR.

The kind of question in Figure 5, typical of the approach to measuring QR 
in the U.S., appears on many of the 30 or so QR websites I looked at having 
been provided a mere 1,800,000 to consider by Google. These questions appear

The average (arithmetic mean) of x and y is 20. If z = 5, what is the 
average of x, y, and z?
 A. 8 ⅓ B. 10 C. 12 ½ D. 15 E. 17 ½
Answer: Since the average of x and y is 20, (x + y)/2 = 20 so x + y = 40. 
Thus x + y + z = 40 +5 = 45, and therefore (x + y + z)/3 = 45/3 = 15.

Figure �. Problem-solving question from the GRE released questions.
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to draw on some aspects of QR. However, such questions, by their content and 
format (multiple-choice), seem context free in nature with one correct answer 
actually provided among a set of alternatives. Such an approach does not ap-
pear to be what many faculty and the MAA expect to see on a test of QR.

Rather, the situated approach seems to capture current thinking about QR. 
That is, QR is evidenced when confronted with a well contextualized, messy, 
open-ended, “real-world” task that demands analysis, critical thinking, problem 
solving and the capacity to communicate a solution, decision, or course of 
action clearly in writing. For example, two pieces of information provided 
in Figure 6 are part of an “in-basket” of information given to the problem-
solver. The task smacks of the “real world” with substantial contextualization. 
The evidence points to a possible correlation between growth in sales of the 
SwiftAir aircraft and an increase in accidents—was the increase proportional? 
There are a number of solution paths and more than one solution to the problem 
could be justified.

The Collegiate Learning Assessment (CLA) provides one possible 
example of an assessment that fits a situated notion of QR. It poses complex 
tasks, provides a variety of information (e.g., data, graphs, research review 
article, news paper article, op ed piece) and asks students to review the 
material, determine what material is relevant and what irrelevant, and arrive at 
a problem solution, decision, or course of action that is justified based on the 
evidence in hand. There is no single correct answer but a variety of possible 
answers that vary in their credibility and evidentiary base. 

Given all of the information in the document library, what do you think are the
three most likely causes of the accidents described in Document 3? Justify your
answer with information from the document library.

Source: Collegiate Learning Assessment

Figure �.  Possible situated QR problem—two pieces of information regarding SwiftAir 
sales and accidents as part of an in-basket of information.
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Because the CLA comes close to the situated definition of QR and what 
might be sought in an assessment of QR, the next section describes the CLA 
in some detail. In passing, note that the kinds of tasks used on the CLA would 
make excellent teaching activities. If faculty used these activities as part of 
their teaching, students might be more likely than at present to improve their 
reasoning. One caveat is in order. The CLA contains a number of performance 
tasks that demand among other things QR. But it is not a test of QR. The 
CLA is presented here as an example of an assessment that might very well be 
adapted to focus on QR. That said, philosophically it fits well with situated QR 
notions in that QR is more than quantitative reasoning; it involved an entire 
complex of reasoning and so do the CLA tasks.

Characteristic Attributes

Open-ended 
Tasks

• Tap critical thinking, analytic reasoning, problem solving and 
written communication

• Realistic work samples
• Engaging task as suggested by alluring titles such as “brain 

boost,” “catfish,” “lakes to rivers”)
• Applicable to different academic majors

Computer 
Technology 

• Interactive internet platform
• Paperless administration
• Natural language processing software for scoring students 

written communication
• Online rater scoring and calibration of performance tasks
• Report institution’s (and subdivision’s) performance (and 

individual student performance confidentially to student)

Focus • Institution or school/department/program within institutions
• Not on individual student performance (although their 

performance is reported to them confidentially)

Sampling • Samples students so that not all students perform all tasks
• Samples tasks for random subsets of students
• Creates scores at institution or subdivision/program level as 

desired (depending on sample sizes)

Reporting • Controls for students’ ability so that “similarly situated” 
benchmark campuses can be compared

• Provides value added estimates—from freshman to senior 
year or with measures on a sample of freshmen and seniors

• Provides percentiles
• Provides benchmark institutions

Figure 7. Characteristics of the Collegiate Learning Assessment 
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The roots of the CLA can be traced to progressive notions of learning, 
focusing on critical thinking, analytic reasoning, problem solving, and written 
communication (Figure 7; Shavelson, 2007a,b). These capabilities are tapped 
in realistic “work-sample” tasks drawn from education, work, and everyday 
issues. They are accessible to students from the wide diversity of majors and 
general education programs. The capacity to provide these rich tasks without 
overburdening students is afforded by recent developments in information 
technology. The assessment is delivered on an interactive internet platform that 
produces a paperless, electronic administration and online report of results. 
Written communication tasks are scored using natural language processing 
software and performance tasks are currently scored by online human 
raters whose scoring is monitored and calibrated. Within the next year, the 
performance tasks will be scored as well by computer software.

The assessment is divided into three parts—analytic writing, performance 
tasks, and biographical information—the first two of which are relevant to 
present discussion. Two types of writing tasks are administered. The first, 
make an argument, invites students to present an argument for or against a 
particular position. For example, the prompt might be: “In our time, specialists 
of all kinds are highly overrated. We need more generalists – people who can 
provide broad perspectives.” Students are directed to indicate if they agree or 
disagree and to explain the reasons for their positions. In a similar vein, the 
second type of writing task (Figure 8) asks students to evaluate an argument 
(CLA, 2005). 

The CLA performance tasks present real-life problems to students such as 
that for Dyna-Tech and Crime (Figures 9 and 10) by providing an “in-basket” 
(or nowadays, “computer basket”) of information bearing on the problem (CLA, 
2005). Some of the information is relevant, some not; part of the problem is 
for the students to decide what information to use and what to ignore. Students

A well-respected professional journal with a readership that includes 
elementary school principals recently published the results of a two-year study 
on childhood obesity. (Obese individuals are usually considered to be those 
who are 20 percent above their recommended weight for height and age.) 
This study sampled 50 schoolchildren, ages 5–11, from Smith Elementary 
School. A fast food restaurant opened near the school just before the study 
began. After two years, students who remained in the sample group were 
more likely to be overweight—relative to the national average. Based on 
this study, the principal of Jones Elementary School decided to confront her 
school’s obesity problem by opposing any fast food restaurant openings near 
her school.

Figure �. Collegiate Learning Assessment “Evaluate An Argument” Example.
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You are the assistant to Pat Williams, the president of DynaTech, a company that 
makes precision electronic instruments and navigational equipment. Sally Evans, a 
member of DynaTech’s sales force, recommended that DynaTech buy a small private 
plane (a SwiftAir 235) that she and other members of the sales force could use to 
visit customers. Pat was about to approve the purchase when there was an accident 
involving a SwiftAir 235. You are provided with the following documentation:
1. Newspaper articles about the accident
2. Federal Accident Report on in-flight 

breakups in single engine planes
3. Pat’s e-mail to you & Sally’s e-mail to 

Pat
4. Charts on SwiftAir’s performance 

characteristics
5. Amateur Pilot article comparing 

SwiftAir 235 to similar planes
6. Pictures and description of SwiftAir 

Models 180 and 235
Please prepare a memo that addresses several questions, including what data support 
or refute the claim that the type of wing on the SwiftAir 235 leads to more in-flight 
breakups, what other factors might have contributed to the accident and should 
be taken into account, and your overall recommendation about whether or not 
DynaTech should purchase the plane.

Figure �. Collegiate Learning Assessment Performance Task (DynaTech)

integrate these multiple sources of information to arrive at a problem solution, 
decision, or recommendation. Students respond in a real-life manner by, for 
example, writing a memorandum to their boss analyzing the pros and cons of 
alternative solutions and recommending what the company should do. In scor-
ing performance, alternative justifiable solutions to the problem and alternative 
solution paths are recognized and evaluated. 

A closer look at the Crime Performance Assessment provides insight 
into what a CLA type QR performance assessment might include. Students 
are posed the problem, provided an in-basket of information, and asked to 
analyze the information critically and then inform Mayor Stone about their 
conclusions with evidentiary justification. The in-basket contains the following 
information:

• Newspaper article about crime in the community
• Research abstracts about drug education program
• Report about success of a drug education program in another 

community
• Police report (with table of data) about crime and drug use in the 

community
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Pat stone is running for election as mayor of Jefferson, a city in the state 
of Columbia. Mayor Stone’s opponent in this contest is Dr. Jamie Eager. Dr. 
Eager is a member of the Jefferson City Council. You are a consultant to 
Mayor Stone. Dr. Eager made the following three arguments during a recent 
TV interview. First, Mayor Stone’s proposal for reducing crime by increasing 
the number of police officers is a bad idea. “It will only led to more crime.” Dr. 
Edgar supported this argument by showing that counties with a large number 
of policy officers per resident tend to have more crime then those with fewer 
officers per resident. Second, Dr. Eager said “we should take the money that 
would have gone to hiring more policy officers and spend it on the XYZ 
drug treatment program.” He supported this argument by referring to a news 
release by the Washington Institute for Social Research that describes the 
effectiveness of the XYZ drug treatment program. Third, Dr. Eager said that 
because of the strong correlation between drug use and crime in Jefferson, 
reducing the number of addicts would lower the city’s crime rate. He showed 
a chart that compared the percentage of drug addicts in a Jefferson zip code 
area to the number of crimes. 

Mayor Stone has asked you to prepare a memo that analyzes the 
strengths and limitations of each of Dr. Eager’s three main points, including 
any holes in those arguments. Your memo also should contain points, explain 
the reasons for your conclusions, and justify those conclusions by referring 
to the specific documents, data, and statements on which your conclusions 
are based. 

Figure 10. Collegiate Learning Assessment Performance Task (Crime)

• Plots of the relationship between police offers and crime
• Private investigator report about possible connection between opponent 

and drug education program

In-basket items on a QR assessment might look like those from CLA’s 
crime task described in Figure 11.

QR and teacher education
In his letter of invitation to this conference, Bernie Madison noted that, “The 
goal of the conference is to explore educational solutions to the increasing 
quantitative reasoning demands on US residents, with special focus on the 
education of teachers.” Apparently one such solution is in hand—add QR to 
the teacher-preparation and teacher-enhancement agenda. Certainly this can 
be done. And CLA-type assessments might be used to check to see if teachers 
have met some expected level of QR—although even if they did, the whole 
question of pedagogical-content knowledge and classroom practice then needs 
to be dealt with. That is, can teachers translate their QR into classroom learning 
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Figure 11. Collegiate Learning Assessment performance task: Some in-basket 
information (Crime).

environments where students can acquire the knowledge, skills and abilities 
that constitute QR? 

As may be evident, I am not sanguine about this proposal. The proposal 
does not get at the heart of the problem—and K–12 teachers are not the cause 
of the problem. The proposal ignores the current policy and social context of 
education in the U.S. The policy context is one of high stakes testing. This form 
of accountability drives what gets taught by teachers in the classrooms. Unless 
QR becomes a central focus of what is meant by mathematics achievement, 
and this is very unlikely, it will be put aside even if we accomplished our goals 
with teachers. 

The social context is one of a society that largely does not possess, 
foster or support QR. That message is broadcast loud and clear, especially to 
students. The belief about QR goes something like this. QR and mathematics 
achievement in the U.S. are part of birth—your fixed ability—and some have 
the right stuff and others do not. (I do not agree with this.) Moreover, the 
teaching of mathematics K–16—pedagogy, curriculum, context, students—
has not met the challenge of creating a quantitatively literate citizenry. 
Even more strikingly, the existence proof is all around us. In other countries 
students achieve a much more sophisticated understanding of and ability to do 
mathematics. International comparisons have made this very clear.
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In an article just published in the journal, Science, Bloom and Weisberg 
(2007, p. 996) provide a cogent basis for explaining the U.S. context:

The developmental data suggest that resistance to science [and QR!] 
will arise in children when scientific claims clash with early emerging, 
intuitive expectations. This resistance will persist through adulthood 
if the scientific claims are contested within a society, and it will be 
especially strong if there is a nonscientific alternative that is rooted 
in common sense and championed by people who are thought of as 
reliable and trustworthy.

Since this is a meeting of higher educators, it seems appropriate to lay 
part of the QR problem at our feet. A study by Liping Ma (1999) highlights the 
problem. She compared U.S. and Chinese elementary mathematics teachers 
teaching of mathematics. The U.S. teachers were college graduates; not so 
the Chinese teachers. Nevertheless, the latter were found to have a strong 
conceptual grasp of mathematics and emphasized the conceptual in their 
teaching while the latter had an algorithmic grasp and emphasized algorithmic 
practice in their teaching. The simple algorithms understood by U.S. teachers 
were inadequate to the task—e.g., judging when a novel approach taken by 
a student to a problem was justified. A similar finding, contrasting US and 
Japanese elementary mathematics teachers, has been reported by Aki Murata 
(2004). Moreover, in my experience, students who indicate that they will pursue 
a teaching credential while earning a bachelor’s degree in an academic major 
may take a somewhat different pattern of courses than “regular” majors. If this 
pattern is common in mathematics departments, there is then an opportunity-
to-learn issue. 

If we are not preparing college students adequately in mathematics and 
quantitative reasoning, perhaps a significant part of the QR problem lies 
not in teacher preparation but in the preparation of students generally, and 
teachers in the academic majors. If this chain of reasoning (admittedly not 
quantitative!) makes any sense, perhaps we should be talking about preparing 
QR in introductory college mathematics courses for the broad college 
audience, in general education courses, and in the mathematics major creating 
a pedagogy that gives the diversity of students access to both QR and the level 
of mathematics needed to teach in high school.

I understand this is heresy. But perhaps it will stimulate discussion broadly 
and lead to an analysis of the various contributors to the current state of QR in 
our country. In the end, we may settle on teacher education. But perhaps if we 
do, we will have done so with some perspective.
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Humanism and Quantitative Literacy

Robert Orrill*

The President of Harvard College, seeing me once by chance 
soon after the beginning of a term, inquired how my classes 
were getting on; and when I replied that I thought they were 
getting on well, that my men seemed to be keen and intelligent, 
he stopped me as if I was about to waste his time. ‘I meant,’ 
said he, ‘what is the number of students in your classes.’1

—George Santayana, 
Character  and Opinion in the United States 

With some hesitation, I invite you to consider Santayana’s simple parable. 
This brief remembrance is one that he first recounted in a lecture delivered in 
England near the end of WWI. The incident itself, however, happened many 
years before, in the early 1890’s, when Santayana was a junior member of 
Harvard’s philosophy department. The impatient (and here unidentified) presi-
dent in the story is Charles Eliot who, at the time this encounter took place, 
was widely regarded as the most influential educator in the United States. 
Although they are colleagues, there is no cordiality indicated in the meeting 
of the two men. Nor, almost three decades later, is there even a hint of any in 
its recollection.

———
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The absence of good feeling in this encounter is, I believe, an emotional 
fact worth our close attention. In its details, of course, the incident does not 
seem to present a quantitative problem of any difficulty or interest. Hence my 
hesitation in calling it to your attention. Indeed, we know from other sources 
that Santayana would have had no trouble supplying the number that Eliot 
demanded from him. At this time, he tells us, the students in his classes numbered 
no more than a handful—there were only three or four undergraduates, for 
instance, in a course on the British Enlightenment that he had inherited from 
William James. So, in a strict sense, there is no quantitative issue here that 
involves anything other than the most rudimentary arithmetic.

Is this a case, then, in which Quantitative Literacy (QL) has little or no 
work to do? The answer depends, I believe, on how much we should make 
of the claim that QL informs us about numbers, not in the abstract, but in the 
many ways we meet them in life itself.2 Here, for instance, what occurs in this 
encounter amounts to much more than an exchange of quantitative data. In 
Eliot’s mind, as the young Santayana knows, three or four students in a class 
translates directly into a moral judgment—in sum, it means not enough, too 
few, a weak showing. Moreover, it further signifies that Santayana is failing to 
do his share and, very possibly, may be making less than a full effort. Taken in 
context, therefore, the number in question cannot be understood apart from its 
moral reverberations. In effect, numbers and feelings are so closely joined as to 
be inseparable and thereby combine in this instance, as they so often do in life, 
to make a moral event. How, if at all, should QL approach such events? Only 
arithmetically? Or is it attentive to them in a more complete sense and, if so, 
to what end? Addressing these questions here at Wingspread might help clarify 
the role of QL in a liberal education.

Here, in the beginning, something more might be said about Santayana’s 
meeting with President Eliot. Briefly stated, what happens in this encounter? 
Outwardly, of course, very little. By chance, the two men come together, 
exchange a few words, and then go their separate ways. Inwardly, however, 
much changes for the young Santayana. Suddenly, he finds that the world is very 
different from what he thought it to be. In effect, the question that Eliot puts to 
him conveys that the worth of philosophy—or any subject—should be derived 
from the number of students that it can attract. For Santayana, this intrusion 
of market standards rendered the environment almost unrecognizable. What, 
innocently, he had believed to be a sanctuary of the intellect now confronts 
him—in the person of the president—with a setting dominated by the rule 
of quantification and a crude regime of numbers. From one moment to the 
next, then, his own alma mater, Harvard, had become a strange and oppressive 
place.
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If he noticed Santayana’s discomfort at all, it is unlikely that Eliot felt 
it to be of any significance. Doubtless, he considered the question he asked 
to be of the utmost importance and entirely in order. Writ large, in fact, it 
reflected a policy of “quantitative aggrandizement” then evident everywhere 
in American education.3 In promoting this policy, Eliot himself had warned 
that the very survival of the American college depended on its keeping pace 
“with the growth of the country in population and wealth.”4 This meant, in 
practice, that the college must seek to have more of everything—money, 
students, buildings—and to gain these things it, above all, must include “all 
subjects” in its offerings and leave the choice among them entirely open to the 
election of students. Without a prescribed curriculum of its own, then, nothing 
could narrow a college’s chances for growth. No matter that an absence of any 
uniformity in the learning of students made it difficult to give “clear meaning” 
or ascribe “exact significance” to the baccalaureate degree. For this, too, Eliot 
had a quantitative solution. As it had in the past, he said, the degree should 
still testify to the “main fact” that “the recipient has spent eight or ten years, 
somewhere between the ages of twelve and twenty-three, in liberal studies.”5

Although much more could be said, this perhaps is where we should leave 
the Eliot-Santayana encounter. Suffice it to note that Santayana’s discomfort 
in the American academic environment only intensified during the years that 
followed this incident. With a sense of profound relief, he eventually fled 
Harvard and thereafter rejected all offers either to return there or to accept a chair 
in any other American university. Moving on, though, I now want to discuss 
how this case is an illustrative one. Examining the historical record, we can see 
that many of Santayana’s contemporary humanists shared the same feelings 
of discontent with Eliot’s “new education;” and this, I believe, helps account 
for why they gave quantitative matters so little consideration in their approach 
to student learning. Without much exaggeration, one could even say that they 
entirely banished quantitative issues from their vision of a liberal education.

This, I might add, was essentially the character of my own educational 
experience. As an undergraduate, my studies were mostly of a humanistic 
nature; and, looking back, I cannot recall even once being asked to address 
a serious quantitative question in completing a large array of courses devoted 
to history, literature, philosophy, and the arts. This surely contributed to my 
becoming quantitatively oblivious; and later, as a teacher myself, I in turn 
never asked my students to attend to any of the quantitative problems lurking 
in the texts that we read together. Until very recently, in fact, I do not think that 
I noticed that they were there.

My own experience, then, suggests that an aversion to numbers has a long 
history in the so-called humane studies. Why this antipathy to quantification? 
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What is its origin? In part, at least, its beginnings can be traced to the “anxiety” 
felt by Anglo-American humanists when, in the late 19th century, they looked 
ahead to the looming dominance of a mass democracy.6 As they saw it, this 
threat of an overwhelming deluge of numbers placed civilization itself in grave 
peril. In 1884, for instance, Matthew Arnold delivered a lecture in the United 
States that he entitled “Numbers; or the Majority and the Remnant.” His main 
intent in this address was to warn his listeners about the dangers of becoming 
enthralled by the large numbers that made up so much of the data typically 
brought forth in praise of American life. To be sure, he said, these facts were 
undeniable and seemingly very impressive. Citing a fellow countryman, he 
told his listeners:

The vast scale of things here, the extent of your country, your 
numbers, the rapidity of your increase, strike the imagination, and are 
a common topic for admiring remark. Our great orator, Mr. Bright, is 
never weary of telling us how many acres of land you have at your 
disposal, how many bushels of grain you produce, how many millions 
you are, how many more millions you will be presently, and what a 
capital thing this is for you.7

This, of course, is said ironically. In plain speech, Arnold means that all 
this talk of abundance is tiresome stuff. Worse yet, such boasting about material 
things weighs heavily on the spirit and is deadening to the soul.

More sermon than lecture, Arnold’s talk holds fast throughout to a single 
message. The Americans may be a people of plenty, he says, but morally this 
has placed them at risk of identifying goodness with quantity—that is, of 
mistaking more for better and most for better yet. For correction, therefore, 
they should look to the lessons of tradition, to the wisdom that resides—as 
he famously put it—in “the best which has been thought and said.” There 
they will be reminded that the “sages and saints” always have warned that the 
multitude is “unsound” and not to be trusted. More positively, they also will 
find the teachings that make up “the doctrine of the remnant.” This guidance 
conveys the good news that a few, an elect, can protect against the failings of 
the many and spiritually uphold an entire culture. In some variant or other, of 
course, this belief that the masses should (and will) allow themselves to be led 
by a priesthood or an elect of some kind would long continue to influence the 
evolution of American education. 

During his lecture tour, Arnold also emphasized that the doctrine he 
preached had a direct bearing on educational arrangements in the United 
States. It meant that the aim of the university, above all else, should be to 
nurture this much-needed “saving remnant.” In turn, this task required that 
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the work of the university should be devoted to the transmission of tradition 
and, therefore, that study therein should attend to a core curriculum that was 
literary, classical, and morally earnest in its orientation. Rejecting any such 
dwelling on the past, Eliot had said that the university should seek its fortune 
in the here and now, embrace American life, and grow along with it. Arnold, 
in contrast, urged that this teeming activity be kept out of collegiate education. 
Both held that students should be led “to think,” but, for Arnold, thought was 
reflective, a turning inward, and directed in each person toward development 
of a “best self.” If study remained true to this aim, the university could hope to 
produce a leavening cadre of “workers for good.” Necessarily, of course, such 
an approach envisioned an exalted role for both faculty and students. For the 
sake of the culture at large, they were to serve as nothing less than a clergy of 
the intellect and keepers of the spirit.

In essence, what Arnold advocated was a somewhat spiritualized version 
of an Oxbridge college. During the years that followed, this in fact became 
the model that most humanists favored and hoped would prevail in American 
undergraduate education. More than any other option, this ideal provided their 
own basis for self-understanding and sense of vocation. They knew, of course, 
that their views were in conflict with the utilitarian model promoted at this 
time by Eliot and most other university presidents. In a concrete instance, we 
glimpsed this clash in the Eliot-Santayana encounter. On a larger scale, this 
also was the drama that Henry James saw unfolding when, in 1904, he revisited 
Harvard after an absence of twenty years. An admirer of Arnold, he had 
hoped on his return to find something resembling an American Oxford—quite 
literally, as he put it, to walk into a cloistered haven “inaccessible…to the shout 
of the newspapers, the place to perambulate, the place to think, apart from the 
crowd.” In contrast with Eliot, then, he thought that Harvard should provide 
an “antidote” to the life that surrounded it. The image he invoked was that 
of a “university…stamped with the character and function of the life-saving 
monasteries of the dark ages.”8But, instead, what he found happening on the 
ground was a dimming of this ideal. This weakening, moreover, was not due 
to the world pressing in and encroaching upon Harvard. On the contrary, much 
to James’ regret, he saw that a “restlessly expansive Harvard” had acquired an 
impetus of its own and was now actively “stretching forth, in many directions, 
long, acquisitive arms.”

The humanists, then, had wanted the American college to remain enclosed 
and be kept small. By 1900, however, most of them recognized that this was 
a lost cause. Enrollments in college were increasing almost everywhere; and 
the prevailing educational policy opposed all efforts to place limits on growth. 
With few exceptions, the humanists acquiesced in the face of these dominant 
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trends; but they remained uncomfortable with the conditions that resulted. They 
were puzzled, most especially, by student motives for attending college. Why 
were they coming in ever-mounting numbers and what were they seeking? The 
answers to these questions turned out to be perplexing. All too few students, 
it seemed, shared the faculty outlook on the undergraduate experience. If 
asked, a humanist would have advised the student to think of college work as 
embarking on an “adventure of ideas”—or, as John Dewey put it, as setting 
out on a “voyage,” a “travelling of the spirit.”9 As it happened, though, most 
students were not attracted to an intellectual journey of any kind. Instead, they 
had enrolled in college to secure social advantage, a required credential, or, in 
a large number of cases, with only the vaguest notion of what they wanted or 
needed. Moreover, many of these students came to college from high schools 
that had ill-prepared them to undertake challenging work. Taken together, all of 
this presented an awkward quandary that humanists found difficult to resolve. 

Given these circumstances, what should the humanist do? In 1917, this 
was the question that Carl Becker put to himself in an irony-laden essay 
entitled “On Being a Professor.” Then on the faculty of the University of 
Kansas, Becker later moved to Cornell and, over time, would become the most 
respected historian of his generation. Here, though, he presents himself as a 
bewildered Arnoldian—that is, as a humanist who belatedly has discovered 
that his educational aims are in conflict both with the “Zeitgeist” and the facts 
of the classroom. As a beginning teacher, Becker says, he believed that faculty 
and students together should think of “four years in college” as “a wonderful 
adventure in the wide world of the human spirit.”10 After teaching for two 
decades, however, he had come to accept that very few students joined him in 
this point of view. There simply could be no denying that most of those under 
his care, like humankind generally, did not “hunger and thirst after knowledge, 
anymore than after righteousness.” For Becker, this was a troubling recognition. 
What, he asked, was his duty toward this growing body of students? Did he “best 
serve…by attending mainly to the great majority or by attending to the saving 
remnant.” The answer to this question, Becker thought, determined whether 
the professor aimed “to make the university a school of higher education or 
merely a higher school of education.”

But perhaps this question need not be asked. Maybe, Becker admits, the 
humanist lives too much in the past and wrongly clings to antiquated ideals. 
For a different approach, why not try to get in step with the new doctrine 
of “efficiency” recently imported into education from American industry?11 
This quantitative ethic, Becker finds, proclaims that the only questions worth 
asking about “any educational institution or course of study” are “whether it 
has a practical value, whether it has a measurable value, and whether its value 
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is equal to its cost.” To get “on the right track,” therefore, humanists need 
first to stop bothering about all those “elusive” qualities of intellect and spirit 
that they, up to now, have believed to be at the heart of a true education. And 
why not do this? After all, could they any longer provide a compelling (or 
testable) definition of the wisdom and virtue they thought so important? If not, 
perhaps the “qualitative arithmetic” taught by the efficiency experts should be 
welcomed. In applying it, one:

had only to count, an extremely easy thing to do, and very precise 
in its results. One had but to count the students in all the universities 
to determine which was the greatest university, the enrollment in all 
the course to determine which was the best course. That student was 
the most liberally educated who obtained the best paying job. The 
ablest professor was the one who accumulated the most degrees, or 
printed the most books; while the most efficient was he who taught 
most hours in the day, or whose name was attended with the longest 
retinue of varied and noted activities.

Here, then, was a creed that promised an “easy solution” for “all the great 
problems of education”? To share in this new dispensation, the humanist had 
only to surrender the fundamental tenet that spiritual and material values should 
be considered of “a different order altogether” and, in consequence, also cease 
to insist—as they had long held—that the former can neither be “fostered nor 
measured by means… appropriate to the latter.”

Becker, quite obviously, hopes that his fellow humanists will not be 
tempted to make any such move. His tone throughout bespeaks utter scorn for 
a doctrine that proposes to quantify what can only be qualitatively discerned. 
But nowhere does the essay become a call to battle. Instead, Becker counsels 
a policy of resignation. In the reigning climate of opinion, he says, conditions 
favor and support the efficiency experts. And, unhappily, the Zeitgeist “is 
useless to resist, however little one may enjoy it.” So, for now, the humanist 
should expect that “efficiency” will continue to draw strength from its pledge 
“to bring education into harmony with the main trend of thought in society at 
large.” Lacking any convictions of its own, Becker laments, the university will 
always try to mimic the practices that prevail in business, industry, and finance. 
Moreover, students themselves will prefer to be credited with a numbering of 
the hours of study they endure rather than be judged for the quality and spirit 
of their learning. Therefore, given these conditions, humanists must accept 
the fact that they will appear to be “late survivals” of an outworn tradition. 
Prudence dictates, then, that they seek a “sheltered corner” in the university 
and, from there, await the coming of a different time. And what about the 
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spectre of efficiency? Becker’s message, in the end, seems to be that this, too, 
will pass. 

Many humanists shared Becker’s discomfort with the “qualitative 
arithmetic” that ruled the university, but I do not suggest that all joined in 
his resort to quietism. Some, indeed, were quite forceful and direct in their 
opposition. Of these, Lionel Trilling should be counted among the most 
articulate. Arnold’s biographer, Trilling was one of the most—perhaps the 
most—distinguished humanist of his time (roughly 1945-75). His cultural 
criticism was wide-ranging, and, running through it, one often finds an 
insistence on the greater value of the humanities relative to the number-driven 
social sciences. In fact, in his carefully-wrought essays, one sometimes can 
sense that he is morally incensed by the power that the social sciences have 
come to wield both in the academy and society at larger. This indignation 
perhaps reached a peak in a review of the Kinsey Report that he wrote shortly 
after this study appeared in 1948. Here Trilling addresses in detail what he 
sees as the ambitious intent of social science to “speak decisively” about a 
matter—sexual conduct—that, in its moral bearings, traditionally “has been 
dealt with by religion, social philosophy and literature.”12

Trilling’s approach to Kinsey’s report is that of a cultural critic. Never, 
that is, does he directly reproach Kinsey for employing flawed statistical 
methods, making errors, or drawing wrong conclusions—though he leaves no 
doubt that he believes the report to be defective in all these ways. Instead, he 
accuses Kinsey of being duplicitous in that his report conceals its true aims 
from the public. The huge fault of the report, Trilling says, is that it claims 
to be indifferent “to all questions of morality at the same time that it patently 
intends a moral effect.” Moreover, he adds, all social science shares in this 
same guilt when it refuses to honor—and make the best of—the subjectivity 
that necessarily pervades all of its investigative projects. Kinsey, then, stands 
out only as a very striking case of a much larger failing.

This failure is all the greater, Trilling argues, because it is one that social 
scientists could easily correct. All they need do, he asserts, is to give up the 
pretense of “objectivity” and accept that their work, unavoidably, is shot 
through with moral judgments from beginning to end. They refuse, however, to 
make any such admission, taking a stance instead based on claims that they—
and others—make for the “neutrality” of numbers. Here, particularly, Kinsey 
serves to illustrate the point. As described by Trilling, Kinsey is a behaviorist 
to the core. This point of view commits Kinsey to the belief that human sexual 
experience can be reduced to physical acts of a range and kind observable 
throughout the natural world. So, having dismissed any semblance of social 
context or inner sense from his concept of experience, he further narrows the 
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meaning of sex to only those acts that can be counted and numbered. These alone 
are the “facts,” and there is no other admissible evidence of our sexual nature. 
In this way, Trilling points out, “the sexuality that is measured is taken to be the 
definition of sexuality itself.”13 From such a standpoint, then, “normality” in 
sexual behavior becomes entirely a matter of amount and frequency—and this, 
he observes, leads Kinsey to promote an ethic of “the more the merrier.” What 
empirical finding, Trilling adds, could be more pleasing to the male animal?

In Trilling’s estimation, furthermore, Kinsey’s work is not only reductive. 
It also is redundant, and this perhaps is its most disturbing defect. Does the 
public really need such an extensive quantitative effort to provide it with 
sexual self-enlightenment? And why should the Rockefeller Foundation and 
the university have lent this project their authority and favored it with such 
lavish financial support? These questions, Trilling says, should come to mind 
when we consider that all the report tells “society as a whole is that there is 
an almost universal involvement in the sexual life and therefore much variety 
of conduct.” This, after all, is something that could be gathered, at little or no 
cost, by turning to “any comedy that Aristophanes put on the stage.” This, 
source, however, is one that now is little read and seldom consulted. Sadly, 
Trilling complains, the same must be said about our literary heritage in its 
entirety. No one, for instance, could imagine a foundation promoting a return, 
say, to Lucretius, even though this ancient poet tells us far more about the 
nature of human sexuality than can be found in the many pages of the Kinsey 
Report. This, Trilling says, reveals what has become the “established attitude” 
both among foundations and in universities. In these settings, as well as in the 
culture at large, quantitative data always trumps literary testimony. So, more 
than anything else, the Report should be viewed as symptomatic of the kinds 
of intellectual projects that really count and those which are only marginal. 
Most especially, the humanists must wake up to this fact and perhaps even be 
moved to lose their collective temper. Even though civility may suffer, Trilling 
concludes, such conditions call for resistance rather than restraint, redress 
rather than retreat.14 

Here, with Trilling, we have come to the limits of this essay. Taken 
together, then, what do these case studies tell us? How do they add up? Most 
especially, what response might the advocates of QL want to make to them? 
These are questions that I hope we can discuss at Wingspread. For my own 
part, though, I believe it worth bearing in mind that humanists seem always 
to have kept a worried eye on quantification. Whatever else they reveal, 
these case studies do not bespeak indifference. All join Santayana in finding 
American culture pervaded by a “singular preoccupation with quantity.” Often 
their reaction to this fact has been more emotional than judicious, as much 
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moralistic as analytic. In their view, the cultural workings of quantification 
have been overbearing and bent on crowding out attention to spirit. To this 
felt threat, they have pushed back and attempted to hold the quantifiers at bay. 
In consequence, opposition to quantification has become deeply-seated in the 
heritage of humanism. Oddly enough, I believe that this adversarial legacy 
may present an opportunity for QL as it attempts to find allies among and 
across the liberal arts disciplines. Proponents of QL should consider inviting 
the humanists to turn first to their own texts as a means of revisiting their 
stance toward quantification. This, I believe, is much more likely to produce 
true engagement among humanists than asking that they retrain themselves 
in sophisticated quantitative methods. Whatever the outcome, humanists are 
more likely to enter the conversation—and remain involved—if they can begin 
on familiar ground. At the same time, this also would bring QL into contact 
with documents and texts about which it so far has had little to say. Here, then, 
might be found the makings of a genuine conversation.

No one can be sure, of course, that this conversation will be a productive 
undertaking. Even beginning a cross-disciplinary discussion of this kind 
will be difficult given the fractured condition of the American educational 
enterprise. Current circumstances, however, may not be entirely unfavorable 
to making a start. Albeit not yet in a single voice, many humanists now are 
calling for a thoroughgoing reconsideration of humanistic practice; and this 
self-questioning could open new, if still untried, paths through the academic 
hedgerows. Edward Said, for instance, has urged in a recent series of lectures 
that his fellow humanists turn from the old “unthinking Arnoldian way” and 
recognize that “the humanities and humanism are constantly in need of revision, 
rethinking, and revitalization.”15 Trilling’s younger colleague, Said argues that 
humanists must work to shed the bias toward “withdrawal and exclusion” 
that has been inherent in their practice and to turn instead, as participatory 
democratic citizens, to a critical encounter with the “world of contemporary 
history, politics, and economics.” In everyday practice, this means that 
humanists should attend to an almost limitless array of texts that takes in not 
just “rarified” literary masterworks but, among others, also includes documents 
such as policy statements, political pronouncements, and editorial arguments. 
Said emphasizes that the primary critical concern of the humanists must be with 
the “language” of these texts, but surely, in taking this direction, the humanist 
will encounter a language that is laced with quantitative concepts and replete 
with numbers. When this occurs, one might think that the humanist will be 
ready to enter into a conversation about how words and numbers mix in our 
public language in such a way as to act and react upon one another and together 
join in making meaning. This, anyway, is what I like to believe will happen.
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Numbers [are] the principal language of public argument
— “More or Less,” BBC Radio Programme (2007)

This chapter argues for numbers and for an approach to teaching quantitative 
reasoning that involves secondary and post-secondary teachers representing 
diverse subject matters and disciplines. My arguments are organized around 
the following propositions:

(i) Strengthening students’ quantitative reasoning is an imperative of 
contemporary general education. This critical need is insufficiently addressed 
across secondary and post-secondary curricula. One reason is that current 
justifications for quantitative literacy across the curriculum do not appear 
relevant to what teachers are charged with doing or believe themselves prepared 
to do in their classes. That leads to proposition (ii).

(ii) A fitting context for quantitative reasoning is argumentation, the 
construction, communication, and evaluation of arguments. I argue quantitative 
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reasoning is potentially relevant to a wide variety of claims individuals seek 
to advance in public discourse and will present evidence from a particular 
sample of arguments in college students’ written work in partial support of 
that assertion. Quantitative reasoning can help students as they construct and 
evaluate arguments. This is because quantitative reasoning can contribute to 
the framing, articulation, testing, principled presentation, and public analysis 
of arguments. But what quantitative reasoning skills are especially useful for 
the purposes of constructing, communicating, and evaluating arguments? That 
leads to proposition (iii). 

(iii) The quantitative reasoning habits students need to learn are primarily 
simple and non-technical. I seek to elaborate this point by listing 10 
quantitative reasoning questions that may help students interrogate arguments 
or prepare arguments for interrogation. But in what contexts might teachers 
advance quantitative reasoning skills pegged to basic concerns? That leads to 
proposition (iv).

(iv) The teaching of quantitative reasoning across the curriculum might not 
only model itself on the teaching of writing across the curriculum; it might 
be intertwined with teaching writing. I will identify suggestions for teaching 
students to argue with numbers in their writing. These are based on the 
outcomes of research my colleagues and I have conducted on student uses, 
misuses, and missed uses of quantitative reasoning in written work and on 
resources available to teachers seeking to integrate the teaching of writing and 
of quantitative reasoning. 

Quantitative Literacy in General Education
Why does quantitative literacy merit keen attention in the agenda of secondary 
and post-secondary education? Lynn Steen and his associates (1997, 2001, 2004) 
have answered this question in compelling fashion by highlighting how perva-
sive quantitative information is in contemporary life. Numbers are a staple of 
accounts of world events (Paulos, 1995), environmental trends and challenges 
(e.g., Gore, 2006), public policy (e.g., Best, 2001, 2004), financial matters and 
investing (e.g., Taleb, 2004), consumer choices and advertising (e.g., Seelye, 
2006), medical news and health decision-making (e.g., Gigerenzer, 2002), educa-
tional assessments (e.g. American Institutes for Research, 2006), economic and 
technological developments (e.g., Friedman, 2005; Committee on Prospering 
in the Global Economy of the 21st Century, 2005), science news (e.g., Goldacre, 
2005), and everyday issues (e.g., Levitt & Dubner, 2005). As Steen has stated, 
“The world of the twenty-first century is a world awash in numbers” (1997, p. 1).
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As educators we need to draw attention to why numbers are so widely 
used in modern life (e.g., Cohen, 2005; Porter, 1995). We need to show others 
that numbers can contribute to precision in our thinking, facilitate the public 
discussion and evaluation of claims, help us grasp the attributes of large and 
complex phenomena, organize vast domains of information, and help us discover 
patterns of relationships not readily available to human perception. In sum, 
numbers are not only important because they are pervasive; they are pervasive 
because they are important. It is because numbers have both the power to 
influence and the power to inform that we need to educate citizens to attend to 
numbers, to understand them, and to think thoughtfully and critically about them.

Recent discussions of the goals of higher education acknowledge the 
growing significance of quantitative literacy, and credit for that rests, at least 
in part, with advocates such as Best (e.g., 2004), Madison and Steen (2003), 
Paulos (1988), Schield (2005), Steen (1997, 2001, 2004), and others. Derek 
Bok (2006), for example, is promoting a list of broad aims for contemporary 
undergraduate education, including strengthening communication skills, 
critical thinking, moral reasoning, responsible citizenship, appreciations 
of diversity, involvement in a global society, breadth of knowledge, and 
preparations for work. In the context of his treatment of critical thinking, he 
notes, “certain basic quantitative methods seem applicable to a wide enough 
range of situations to be valuable for almost all students” (2006, p. 69). (I 
would add, in keeping with the arguments of those aforementioned advocates, 
that quantitative literacy could be seen as equally essential to other educational 
purposes Bok identifies, such as appreciating diversity, living in a more global 
society, and preparing for work.) Similarly, a recent report by the Association 
of American Colleges and Universities (2005), Liberal Education Outcomes, 
suggests that there is “a remarkable consensus on a few key outcomes that all 
students, regardless of major or academic background, should achieve during 
undergraduate study” (p. 2). That report specifies quantitative literacy as one 
of those outcomes (see also the 2007 Association of American of Colleges and 
Universities report, College Learning for the New Global Century). Finally, 
if the reader prefers a more succinct curricular directive, he or she could do 
no better than Princeton philosopher K. Anthony Appiah’s general education 
recommendation to contemporary students under the heading: “Learn Statistics. 
Go Abroad” (Appiah, 2005).

One feature common to current curricular discussions is support for 
a quantitative literacy across the curriculum approach. This has long been 
advocated in the quantitative literacy literature (e.g., Orrill, 1997, p. xiii) and 
has been reiterated in broad treatments of curricular priorities. Bok (2006), for 
example, suggests that:
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…numeracy is not something mastered in a single course. The ability 
to apply quantitative methods to real-world problems requires a 
faculty and an insight and intuition that can be developed only through 
repeated practice. Thus quantitative material needs to permeate the 
curriculum. (p. 134)

This call for quantitative literacy to be taught across the general education 
curriculum, as well as across all levels of education (Conference Board 
of the Mathematical Sciences, 2001), resonates with what educators and 
psychologists know about conditions that facilitate generalized learning. For 
example, Halpern and Hakel (2003) conclude that teaching for the transfer 
(generalization) and long-term retention of knowledge requires learners “to 
generate responses, with minimal cues, repeatedly over time with varied 
applications so that recall becomes fluent and is more likely to occur across 
difference contexts and content domains” (p. 38).

But how can quantitative literacy be taught for the purposes of general 
education? One response to this is to teach quantitative literacy in mathematics 
and (a) hope that students have reinforcing encounters with quantitative 
thinking in other courses, or (b) orient the quantitative mathematics courses 
themselves to be more broadly problem-based (e.g., Nolan & Speed, 1999). 
Another response is to teach quantitative literacy in other disciplines that 
employ quantitative analysis as an investigative tool, such as the social 
sciences, and to relieve mathematics of the sole or even primary educational 
responsibility for quantitative literacy. This chapter argues for a third way, one 
that has the potential to broaden the uses to which quantitative reasoning is put 
and the places in the curriculum it is taught.

The model it emulates is writing across the curriculum. As David Bressoud 
wrote in the forward to Achieving Quantitative Literacy (Steen, 2004), 
“Quantitative literacy does not need to be taught only by mathematicians any 
more than effective writing needs to be taught only by English professors” 
(p. ix). But however compelling it might be on educational grounds to teach 
quantitative literacy across the curriculum and however appropriate it might 
be to do so in meaningful, distributed contexts, there are reasons why it has 
proven much more difficult to forge quantitative literacy across the curriculum 
initiatives than writing across the curriculum ones. Writing is a means of 
expression common to most disciplines, whereas quantitative literacy appears 
relevant to courses in the social and natural sciences but, with minor exceptions, 
not elsewhere. Moreover, secondary and post-secondary instructors are more 
likely to be confident in their abilities to teach writing than quantitative 
analysis, even if only at a basic level. So key challenges remain: why should 
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teachers in a variety of subject matters believe quantitative literacy is relevant 
to what they do and, moreover, why should they believe they possess the ability 
and background to help students strengthen quantitative reasoning habits of 
mind? Perhaps these challenges can be met if we reconsider the conventional 
contextual framing of quantitative literacy. 

Quantitative Reasoning in the Context of Argument
The primary thesis of this chapter is that quantitative literacy can be usefully 
situated in the context of argument, in the presentation of statements supporting 
claims. In this sense, arguments are not only reasons to take one position or an-
other on a contentious issue but address explicit and even implicit claims about 
the nature of a phenomenon or the importance of a topic (see, e.g., Fulkerson, 
1996; Ramage, Bean, & Johnson, 2007). Teaching students how to identify and 
find the constituent elements of an argument, how to organize arguments sys-
tematically, what kinds of statements support particular arguments effectively, 
how to present arguments clearly and meaningfully to an audience, how to ad-
dress their own arguments reflectively, and how to evaluate others’ arguments 
are fundamental to education at all levels and in almost all disciplines.

What can quantitative information do for arguments? Among other things, 
quantitative information may be used to help articulate or clarify an argument, 
frame or draw attention to an argument, make a descriptive argument, or 
support, qualify, or evaluate an argument. Quantitative analysis may also 
influence how arguments are marshaled and how exchanges of arguments 
are conducted. As Robert Abelson (1995) wrote, “the purpose of statistics 
is to organize a useful argument from quantitative evidence, using a form of 
principled rhetoric” (1995, p. xiii). Moreover, such arguments are open to 
knowledgeable evaluation. According to Theodore Porter (1995), “In practice, 
objectivity and factuality rarely mean self-evident truth. Instead, they imply 
openness to possible refutation by other experts” (p. 214). This is one of the 
signal virtues of quantitative analysis; it contributes to open tests of ideas that 
can be reported in argument and evaluated by others. 

Quantitative reasoning has been linked to argumentation previously, but 
in the existing literature primarily so with regards to how quantitative results 
are interpreted (although students also commonly face the challenge of taking 
word problems and figuring out what statistical procedures might be needed 
to answer them). There is a wonderful Edward Koren cartoon from The New 
Yorker (December 9, 1974) showing the personified numbers 9, 6, 2, 1, 8, 
and 4 seated on chairs on stage being introduced by a man at the podium who 
quips, “Tonight, we’re going to let the statistics speak for themselves.” Of 
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course, we all know that the numbers do not speak for themselves; someone 
advocates a case for the sense the numbers might make. To be sure, that is a 
significant domain of quantitative reasoning, of arguments about the meaning 
of numbers that are used in arguments with numbers. The Conference Board of 
the Mathematical Sciences (2001), for example, repeatedly cites interpretation, 
“relating the results of data analysis back to original questions and stating 
conclusions” (p. 87), as a basic task elementary, middle school, and high school 
teachers of statistics should address. But interpreting the meaning of numbers 
represents only one way in which we argue with numbers, one in which the 
numbers themselves are the focus of attention rather than the larger arguments 
of which they are a part.

What a broader approach to examining the relationship between 
quantitative reasoning and argumentation might yield became clearer to me 
and my colleagues at Carleton College as we undertook activities associated 
with our Quantitative Inquiry, Reasoning, and Knowledge (Quirk) initiative. 
Two years ago eight faculty and academic support staff met to read and discuss 
papers submitted as part of student writing portfolios required to meet the 
College’s writing requirement. We wanted to learn whether and how students 
used quantitative reasoning in written arguments to help us orient workshops 
for faculty and academic staff. After this informal inquiry, we began developing 
a more systematic approach to evaluating student papers for quantitative 
reasoning using a coding rubric we have since been refining (see Quirk Rubric 
for the Assessment of Quantitative Reasoning in Student Writing, 2007). 

What became clear as we developed the rubric was that there were at least 
two general ways in which students used quantitative reasoning in written 
argumentation: peripherally and centrally. Peripheral uses cite numbers to 
provide details, enrich descriptions, present background, or establish frames of 
reference. Jane Miller (2004), in The Chicago Guide to Writing about Numbers, 
captured the spirit of peripheral applications of quantitative information when 
she advised her reader, “Even for works that are not inherently quantitative, one 
or two numeric facts can help convey the importance or context of your topic” 
(p. 1). An example of a peripheral use of quantitative information is given 
in a psychology paper that is centrally concerned with identifying possible 
psychogenic pain mechanisms but peripherally discusses the incidence of 
psychogenic pain in an introductory paragraph. Central uses of numbers 
address a primary question, issue, or theme in a paper. An example of a central 
use of quantitative information is given in a paper for an economics course 
evaluating the need for quotas on textile and apparel imports from China. 

We have been using the rubric to code randomly drawn student papers 
from the portfolios as “potentially employing quantitative information 
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peripherally” or as “potentially employing quantitative information centrally” 
or as “not at all or incidentally potentially involving quantitative information” 
(see Lutsky & Tassava, in preparation, for details). Over two studies (Lutsky, 
2006, Lutsky & Tassava, in preparation), we found that roughly two thirds 
of all papers assessed, representing a sample of papers from courses across 
the curriculum, were judged as potentially involving quantitative information. 
Approximately a third of the entire sample of papers potentially involved 
quantitative information in a peripheral role and a third potentially involved 
quantitative information in a central role. (Quantitative reasoning was judged 
as irrelevant to the remaining third of papers.) The peripheral set included 
papers from across the curriculum; papers from the social and natural sciences 
dominated the central set. In addition, we judged that two thirds of the papers 
for which quantitative information was potentially centrally relevant in fact 
used quantitative reasoning. However, only 12% of the papers for which 
quantitative information was potentially peripherally relevant used quantitative 
reasoning.

What do we take these findings as suggesting? First, we should acknowledge 
that the sample of papers we considered reflects certain limiting conditions (e.g., 
selection by students to meet the criteria for portfolio inclusion). Moreover, the 
relevance of quantitative reasoning was judged by two evaluators sensitive 
to potential uses of quantitative information. Nonetheless, we would advance 
two tentative observations: (a) quantitative information is potentially relevant 
to arguments posed in papers from across the curriculum, and (b) quantitative 
reasoning is strikingly underutilized for peripheral purposes in papers from 
across the curriculum. The latter is a key finding: quantitative reasoning could 
be employed for peripheral argumentation in writing across the curriculum 
but currently that is not happening. 

Viewing quantitative reasoning through the lens of argumentation raises 
new challenges for educators. How can we demonstrate to students when 
quantitative information may be useful in framing or evaluating arguments? 
How can we train students to find or generate the quantitative information they 
might begin to seek? At Carleton we have found it useful to work with college 
librarians to help instruct students on locating relevant data, evaluating data 
sources, and checking quantitative information. In other words, quantitative 
literacy in this context has led to a concern for information literacy. 

We have also pursued means of teaching students how quantitative 
evidence might be presented effectively. For example, Fulkerson (1996) 
suggested readers would evaluate the substantiation for claims in terms of four 
criteria, which he labeled using the acronym STAR. The first is Sufficiency, 
whether there is enough evidence provided. The second is Typicality, whether 
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the evidence presented is representative. The third is Accuracy, whether the 
data are true. And the fourth is Relevance, whether the evidence is centrally 
connected to the claim. Quantitative information can be evaluated as evidence 
in light of these criteria and can also provide the grounds for reasoning about 
the adequacy of substantiations offered for a claim.

In sum, what I have argued above is that a fitting context for quantitative 
reasoning is argument. As Max Frankel, the Pulitzer Prize winning former 
editor of The New York Times suggested, “Deploying numbers skillfully is 
as important to communication as deploying verbs” (1995, p. 24). Offering, 
evaluating, and discussing arguments are activities that are common to a wide 
range of subject matters. As teachers endeavor to help students think about 
what makes arguments clear and effective, and how to construct sound and 
principled arguments, teachers may, if sufficiently trained, prompted, and 
informed, come to recognize the important roles that quantitative reasoning 
may play in argumentation. What we have seen is that quantitative reasoning 
is potentially relevant in both peripheral and central ways to the presentation of 
arguments, and that potential peripheral uses of quantitative reasoning are both 
relevant across the curriculum and sorely lacking. That suggests those of us 
who promote quantitative reasoning across the curriculum have an opportunity 
to introduce quantitative issues to our colleagues in a simpler, more accessible 
way than we have previously emphasized.

Quantitative Reasoning Made Simple and Then More Complicated
What is it that we want to educate students to do quantitatively? Taking the 
construction and evaluation of arguments as a primary concern and remaining 
attentive to peripheral uses of quantitative information may lead to a recon-
sideration and simplification of standard quantitative literacy agendas (e.g., 
Conference Board of the Mathematical Sciences, 2001, pp. 43-44; Steen, 2001, 
pp. 15-17), at least at the outset of quantitative education. I am not claiming the 
changes would be radical, nor do I believe they should be, but I do hope the ex-
amples of quantitative opportunities and misinterpretations we highlight will 
become more accessible, relevant, and meaningful to teachers and students 
when they first encounter quantitative reasoning. 

Consider an example of the kind of shortcoming we often tout, recently 
labeled by Howard Wainer (2007) as “the most dangerous equation” 
because ignorance of the equation has led to important misunderstandings of 
quantitative evidence. This is the equation for the standard deviation of the 
sampling distribution of the mean (i.e., the standard error). Not understanding 
that variation is likely to be larger when sample sizes are smaller has led, 
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Wainer shows, to misattributions of the meaning of extreme outcomes derived 
from small samples. Essentially, statistical artifacts are taken as meaningful. 
Insensitivity to the relationship between sample size and variability is common 
in human cognition, as the well-known work of psychologists Tversky and 
Kahneman (1974) has documented.

I wish, as Wainer does, that these statistical effects were more widely 
appreciated. But this is not the kind of understanding that is readily accessible 
to quantitative novices, who may have little sense of what a standard deviation 
is or what the sampling distribution of the mean is. I need to make clear that in 
citing this example, I mean no criticism of Wainer, who, after all, was writing for 
readers of American Scientist. My point is that moderately complex examples 
of unsound statistical reasoning may not encourage educators to promote 
quantitative reasoning. Rather, what I think we need are simple examples of 
how quantitative information may strengthen peripheral and central arguments 
and straightforward questions that can be asked of quantitative claims.

My own attempt to identify a general education agenda for quantitative 
reasoning represents a response to the following prompt: What questions 
would I most want my students spontaneously posing when they encounter 
opportunities for quantitative argument or existing quantitative arguments? I 
have constructed a list of 10 such questions, which I call QR Questions at the 
Ready (Lutsky, in preparation). These are rooted in the quantitative literacy 
literature (e.g., Best, 2001, 2004; Goldacre, 2005; Niederman & Boyum, 2003; 
Paulos, 1988; Steen, 1997, 2001, 2004), my experiences developing and teaching 
a seminar for first year students at Carleton (Measured Thinking: Reasoning 
with Numbers about World Events, Health, Science, and Social Issues), and 
the readings and discussions my colleagues at Carleton and I have had on 
students’ uses of quantitative reasoning, especially as shown in their writing. 

What I have tried to do in the list is to state the 10 framing questions in as 
general a way as possible. Each question subsumes more specific questions, 
such as those shown, and many of specific questions point to more technical 
quantitative procedures and issues. I do not take the list to be comprehensive 
or the best possible list of 10 questions relevant to reasoning about quantitative 
claims, but I do hope it will stimulate thinking about how we might make 
quantitative reasoning more accessible to a broad audience in education and 
beyond.

Here is the list of ten QR “Questions at the Ready”:

1. What do the numbers show? How can numerical information be used to 
establish the context or significance of a topic? What is the magnitude of a 
phenomenon? How can numbers help describe something more precisely? 
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Is there numerical evidence to support a claim? What are the exact figures? 
What do cited numbers mean?

2. How typical is that? Is the example or anecdotal evidence representative? 
What is the central tendency? How typical is the central tendency of the 
scores as a whole or of the scores in subgroups? What is the base rate? 
What are the odds of that? 

3. Compared to what? What is the implicit or explicit frame of reference? 
What is the unit of measurement? Per what? What is the order of 
magnitude? What defines the Y-axis?

4. Are findings those of a single study or source or of multiple studies or 
sources? What is the source of the numbers? How reliable is it? Has 
the source been peer-reviewed? Who is sponsoring the research? How 
plausible is a claimed outcome in light of back of the envelope calculations? 
Has the finding been replicated? Is there a literature on the finding? Are 
there converging conclusions from multiple sources? Can the results of a 
literature be summarized quantitatively? What do the results of relevant 
meta-analyses indicate? 

5. How were the main characteristics measured? How were key variables 
operationalized? What evidence is there that the measurement procedures 
were reliable, valid, and otherwise sound ones for the purposes of the 
study? What meaning and degree of precision does the measurement 
procedure justify?

6. Who or what was studied? What domain is being studied? Who or what 
was sampled from this domain? How was that sample constituted? Was it 
random? How equivalent are any samples that are being compared?

7. Is the outcome of a study anything more than noise or chance? Is the 
outcome unlikely to have come about by chance (i.e., statistically 
significant)? 

8. How large is the result of a study? How substantial is the result? How 
practically important is it? What is the effect size?

9. What was the design of the study? To what extent does the design support 
causal inferences? Is the design that of a true experiment? Was an 
experiment double blind?

10. What else might be influencing the findings? What other variables might be 
affecting the findings? Were those assessed or otherwise controlled for in 
the research design? What do not we know, and how can we acknowledge 
uncertainties?
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Again, I would not claim that the list is sufficient or that it gracefully 
parses quantitative reasoning at its joints. Pragmatically and logically the first 
question is most fundamental. We need to teach students the value of thinking 
in terms of numbers. We need to encourage them to seek relevant numbers, 
both when they argue and when they evaluate the arguments of others. That is 
the foundational habit of mind upon which more sophisticated and technical 
structures of quantitative reasoning can be built.

Writing as a Locus for Teaching Quantitative Reasoning
The teaching of writing provides an inviting opportunity for addressing quan-
titative reasoning because “argument pervades writing” (Fulkerson, 1996, p. 
2). Key values in writing, such as precision in word selection, clarity of ex-
pression, persuasiveness, soundness of supporting scholarship and evidence, 
logical organization, and appeal to readers may be facilitated by quantita-
tively informed arguments. Writing also involves active learning as students 
use and think about numbers. Moreover, writing assignments typically give 
students time to prepare—research, write, and revise—their work and teach-
ers the time to create the educational scaffolding to strengthen writing with 
numbers. 

One essential way teachers can facilitate quantitative reasoning is to give 
students writing assignments that invite or require quantitative reasoning. 
Assignments that call for quantitative analysis centrally may be common in the 
social and natural sciences or in applied statistics courses. Examples of such 
assignments from across the curriculum are available at the web site of the 
Science Education Resource Center (Quantitative Writing, 2007). Deann Leoni 
(2005) has also developed excellent assignments that integrate mathematics 
and English and get high school students writing with and about numbers. 

A major implication of the finding reported earlier on potential peripheral 
uses of quantitative information is that more could be done to encourage 
students to cite relevant numbers to frame and introduce topics. That has led 
us to promote a simple suggestion to faculty at Carleton. It is to ask students 
in writing assignments to use numbers to set an example or case study of 
primary interest in a paper in its wider context. You may recognize that this is 
an instantiation of the second of those QR Questions at the Ready: How typical 
or representative is this? The question has the virtues of directing students 
to think in terms of numbers and of requiring them to learn how to find (and 
possibly evaluate) numbers. Typicality of information may also help a writer 
and his or her reader think about the extent to which and the ways in which the 
characteristics of the example should be generalized. 
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Most of the literature on writing and quantitative reasoning offers 
suggestions for effective ways to write about numbers. A particularly helpful 
resource for teachers and students in this regard is The Chicago Guide 
to Writing About Numbers (Miller, 2004). Miller identifies principles for 
expressing numbers in writing, including seven basic ones. These are: (1) 
establish the context, (2) choose effective examples and analogies, (3) use an 
appropriate vocabulary, (4) decide where to present numbers, (5) report and 
interpret numbers in text, (6) specify the size and direction of associations, and 
(7) summarize overall patterns. Miller also provides specific writing examples 
to illustrate poor, better, and best efforts to meet these writing goals.

Other authors have particular concerns about how numbers are represented 
in words. MacNeal (1994), in Mathsemantics: Making Numbers Talk Sense, 
decries the confusion of events with people. Gigerenzer (2002) discusses how 
representing risks in terms of “natural frequencies” rather than probabilities 
enhances public understanding. Niederman and Boyum (2003) and Paulos 
(1988) discuss means of representing units of measurement or large numbers 
to make them more accessible to readers. 

At Carleton we have identified several recurring problems in student writing 
with numbers. The first, called the weasel word problem, highlights overuse of 
the terms “many,” “often,” “some,” and others of that ilk in the place of either 
appropriate caution or numbers. Shafer (2005) neatly skewered a front-page 
article in The New York Times (Story, 2005) suffering from the same problem. 
A second concern, the staples problem, refers to papers in which quantitative 
information in the form of tables and figures is stapled onto a paper but not 
interpreted in the text (see also Miller’s principle 5). A third shortcoming, the 
comparison problem, indicates instances in which students cite numbers but 
do not provide frames of reference that might make those numbers meaningful 
(see also Question 3 of the 10 QR Questions at the Ready). Finally, we have 
also noted a terminology variability problem in the uses of key quantitative 
terms. Different academic disciplines socialize students to give words such 
as “experiment” (see Question 9 of 10 QR Questions) more or less restricted 
meanings.

Other challenges face the teacher attempting to promote student writing 
using numbers. One, common to writing, is taking the role of the potential 
reader. How much information and what form of information will be 
meaningful to readers? One way I have tried to respond to this question in my 
first year seminar is to bring student writers face to face with readers. I have 
done this in service learning projects in which teams of students take data 
collected by community organizations (e.g., the regional Girl Scouts council, 
a local bike tour) and prepare reports based on the data. I have had the leaders 
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of the community groups come to class to discuss with students what would 
make the reports most useful to their organizations. Another important form 
of this same problem is addressing the reasonable questions of an informed 
reader. What questions are readers likely to raise about the quantitative claims 
(findings) presented in a paper? How can these be anticipated and handled in 
a written report? Finally, a difficult challenge for all of us who use numbers 
in writing is stating claims with degrees of certainty appropriate to the state 
of the evidence. As Robert Kuhn has noted, “the cognitive skill to distinguish 
among hope, faith, possibility, probability, and certitude are potent weapons 
in anyone’s political survival kit and can be applied in all areas of life and 
society” (2003, p. 388).

Coda
In a study at Harvard University, Richard Light (2001) asked undergraduate 
students to identify the characteristics of “faculty who make a difference.” 
What is it that those faculty do as educators that, according to student self-
reports, has a profound impact? Two of the nine attributes students listed were 
these: teaching precision in the use of language, and teaching the use of evi-
dence. The arguments presented in this chapter suggest the two are not unre-
lated to each other and are both potentially intertwined with applications of 
quantitative reasoning. Can recognizing that transform how teachers in sec-
ondary and post-secondary education address quantitative reasoning? That, I 
believe, is an argument worth testing.
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Fractions and Units in Everyday Life

Alan Tucker
State University of New York-Stony Brook∗

Fractions, in the form of percentages and rates, are pervasive in the workplace 
and in decision-making in one’s personal life. However, it is in the transition 
from whole number arithmetic to fractions that too many students fall off the 
ladder of mathematical learning. They continue their education and become 
adults without ever understanding fractions.

Consider the following question on the TIMSS 8th grade test:

Find the approximate value, to the closest integer, of the sum: 19/20 
+ 23/25.

Possible answers were a) 1, b) 2, c) 42, d) 45. (Answer: b) The majority of U.S. 
students chose c) or d). These students did not think of a fraction as a number. 
When asked to add two fractions and get an integer answer, they added the nu-
merators or the denominators of the two fractions. The only numbers that they 
knew about were counting numbers (whole numbers). A fraction to them was 
some combination of two whole numbers. To be fair, fractions are a sophisti-
cated mathematical concept compared to whole numbers.

The critical concept underlying fractions is units. By a unit, we mean a 
standard reference for measurement or counting. Units range from simple 
standards like inches and cents to more subtle standards such as the amount 
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of sugar—say, 2/3rds of a cup of sugar—required in a recipe for a batch of 
brownies. Units also turn out to be the key to understanding multi-step, whole-
number word problems. Being able to solve such word problems, along with 
using fractions, are the mathematical knowledge that a Business Roundtable 
task force (Schaar, 2005) has identified as essential for assembly line workers 
now employed in technologically oriented companies. Moreover, understand-
ing fractions in the framework presented here is a critical foundation for quan-
titative reasoning in the modern world.

Whole number arithmetic was once all the mathematics that most peo-
ple used in their jobs. Today, whole number arithmetic is performed in the 
workplace by machines for the sake of record keeping as well as accuracy. 
Employees no longer do arithmetic calculations themselves. Whole number 
arithmetic is still needed for simple mental calculations throughout daily life, 
but increasingly its primary importance is as the mathematical foundation for 
future mathematical learning.

Fractions have come to have a major role in the workplace. Whether on 
production lines or managers’ desks, many of the numbers one encounters in 
business today are percents and rates—error rate, interest rate, employment 
rate, productivity level, etc. Thus all citizens today need to know how to use 
and interpret fractions. International comparisons like TIMSS reveal that too 
many U.S. students, in comparison to students in other countries, have trouble 
making the transition from whole number arithmetic to fractions. Efforts are 
underway to reorganize mathematics instruction in early grades to give greater 
attention to preparing students for fractions.

While instruction about fractions for college students, as part of a quan-
titative literacy curriculum, will obviously be different from K–8 instruction 
about fractions, a natural starting point for the former instruction is the exten-
sive research about learning fractions in grades K–8 that has been undertaken 
by mathematics educators as well as several mathematicians. This essay at-
tempts to summarize some of this research, (Post, 2002; Lamon, 2006; Steffe, 
Cobb, & von Glasersfeld, 1988; Wu, 2002), and suggests how that research can 
assist efforts to develop better understanding of fractions in college students. 
We also draw on the development of fractions in Singapore and Japan elemen-
tary mathematics curricula. This essay grew out of discussions at a workshop 
on teaching fractions at the Park City Mathematics Institute in July 2006. 

Moving from whole numbers to fractions
Children develop an intuitive understanding of whole numbers in the context 
of counting objects. Because fractions and the arithmetic of fractions are much 



Tucker: Fractions and Units in Everyday Life 77

more complicated, intuition cannot be counted on to develop an understanding 
in a person’s mind of what fractions are, much less how to calculate with them. 
Notation and terminology are much more important with fractions, but they 
can cause more problems than they solve.

For learners of all ages, definitions of basic mathematical concepts have to 
be framed with care: not too formal and not too informal. The common sense 
notion of a whole number as a counting number, used to count how many items 
are in a collection, provides a reasonable definition. In anticipation of ratio-
nal and real numbers, whole numbers may later be identified with appropriate 
points on the number line.

On the other hand, most naïve approaches to understanding of a fraction, 
such as 1/3, can lead to misperceptions. Thinking of 1/3 in terms of a circle 
split into three thirds is a helpful place to start but can cause problems. A per-
son with this image of 1/3 might forget that the pieces need to be equal and 
think of 1/3 as the name of one of the pieces when a circle split into 3 unequal 
pieces. This circle-based definition of 1/3 is not much help when one needs to 
find 1/3 of 24 pencils.

As soon as is judged feasible, a learner should be given the following 
definition of a fraction. This is the definition of a fraction used in many other 
countries:

A fraction is a number that is an integer multiple of some unit 
fraction.

In mathematical notation, we mean a number of the form k(1/l), for whole 
numbers k, l (l > 0). This definition assumes that the person has first developed 
a good understanding of what a unit fraction is. Unit fractions are discussed 
extensively in the next section. Note that in the essay, we will not worry about 
more complicated fractions, with numerators and denominators that are them-
selves fractions or irrational numbers.

Independently of formal study of fractions, people encounter fractions in a 
variety of everyday situations—telling time, making change, cooking recipes, 
sharing (when portions are not whole amounts), and measuring small lengths. 
There are many diverse day-to-day interpretations of fractions. For a fraction 
like 2/3, the two most common interpretations are

1. Representing two of three equally divided parts.
2. Representing the quantity resulting from a measurement, such as 2/3 

meter.
Note that the first interpretation is based on an unspecified whole. A dan-

ger with multiple interpretations of fractions is that may be viewed as equiva-
lent definitions of fractions, heightening confusion about what a fraction is.
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Defining fractions in terms of unit fractions avoids a major conceptual 
problem, namely, establishing that a fraction is a number. That burden now 
falls to unit fractions. A second advantage of defining fractions in terms of 
unit fractions is that this approach separates the study of the numerator and the 
denominator of a fraction. Numerators are standard counting numbers, while 
denominators are a totally new quantity—they are units defined in terms of 
reciprocals. Again, this is the reason we focus in the rest of the article on unit 
fractions and units generally.

With so much time in early grades devoted to whole number arithmetic, 
students unconsciously reinforce their initial intuition that the term ‘number’ 
means only a ‘whole number’ or ‘counting number.’ A U.S. fourth grade stu-
dent who has encountered fractions in measurement (time, money, lengths, 
etc.) and other contexts will still likely say that a fraction is not a number, 
but rather is a part of something. Many adults would probably say the same 
thing. The Rational Number Project devoted considerable effort to understand-
ing the hurdles to learning fractions created by students’ belief that ‘number’ = 
‘whole number.’ A similar problem arises with multiplication, which is initially 
learned as repeated addition, i.e., multiplication by a whole number. In this 
context, multiplication by a fraction makes no sense.

Because so many U.S. students never move beyond thinking of a number 
as a counting number, we should not be surprised that students mindlessly 
memorize operations with fractions in terms of the integers in the numerators 
and denominators of fractions without knowing what a fraction is or that they 
will assert that 1/3 + 1/5 = 1/8.

On the other hand, a child’s first understanding of a number will neces-
sarily be as a counting number and multiplication is naturally introduced as 
repeated addition. Thus the pedagogical goal must be to help students extend, 
rather than abandon, these initial understandings of a number and multiplica-
tion; Les Steffe calls this critical process reconceptualization. Students face 
this challenge over and over as they advance in their mathematical education.

Students do develop a valid understanding of fractions as numbers in prac-
tical settings. For example, people know that one fourth of a particular item 
(e.g., of a pie or a quart) plus two fourths of that item equals three fourths of the 
item. Further, these students can often find natural common units for adding 
fractions in familiar contexts, e.g., half an hour plus a third of an hour equals 
50 minutes.

Teaching students of any age a true understanding of fractions can build 
on their experience with fractions as parts of something and their readiness 
to do simple calculation with fractions. However, it is a big step, with which 
education researchers continue to grapple, to go from thinking about fractions 
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as parts of given objects, such as pies, to thinking about fractions as potential 
parts of an unspecified object.

We close this section by mentioning the ambiguity in the notation for frac-
tions. The expression a/b, where a, b are whole numbers and b > 0, has two 
mathematical meanings. It is a rational number equal to the fraction a(1/b). It 
is also a common way of writing the calculation a ÷ b. Students need to have 
a good understanding of fractions (the first interpretation) before the relation-
ship between fractions and division (the second interpretation) is presented. If 
fractions are presented in the context of division, students can easily think of 
a fraction not as number in its own right, but rather as the quotient of whole 
number division. In this flawed framework, it makes sense to learn arithmetic 
operations on fractions by memorizing integer-valued formulas for the result-
ing numerators and denominators. On the other hand, division naturally arises 
early in the discussion of fractions, e.g., finding 1/4 of some collection, such 
as 12 eggs. How division is best connected with learning fractions is an open 
challenge.

Unit fractions
Unit fractions, such as ¼, are a natural precursor to fractions. Unit fractions 
arise frequently in day-to-day conversations—a quarter (the coin), a quarter 
after 5 o’clock, a quarter of a mile down the road, a quarter of a cup of flour, 
a 1 ¼ inch screw, etc. A growing number of U.S. mathematics textbooks now 
discuss unit fractions to varying degrees starting in first grade.

For young children, unit fractions evolve from counting numbers: a pie 
divided into fourths is split into equal pieces which when counted amount to 
4. Given two pies divided into sixths with 3 sixths left in the first pie (the three 
other sixths were eaten) and 2 sixths left in the second pie, first-grade students 
can count, and later add, the sixths in the two pies to obtain a total of 5 sixths.

Here is an activity (suggested by Yale mathematician Roger Howe) em-
phasizing the difference between counting numbers and unit fractions. Given 
a pitcher with a capacity of one quart of water, a student can determine the 
capacity, say 4 quarts, of a second pitcher by counting how many quart-size 
pitcherfuls it takes to fill up the new pitcher. Now consider a third pitcher 
whose capacity is 1/4th of a quart. To determine what this unit-fraction is, the 
student needs to determine how many pitcherfuls of the third pitcher it takes 
to fill the quart pitcher.

As noted above, while it natural to use pictures of pies or some other 
common geometric figures when starting to work with unit fractions, there are 
several misconceptions that can arise from such geometric examples of unit 
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fractions. Extensive examples with measurement and with dividing a collec-
tion of items in equal shares can help students develop a more general mental 
understanding of unit fractions.

There are a number of different steps that extend this basic start with frac-
tions. Intermixed with pictorial problems about unit fractions can be an oc-
casional set of purely numerical problems (no figures) involving simple ad-
dition of fractions, such as 2/5 + 2/5. Another step is to have problems whose 
answers are improper fractions and then to restate an answer such as 5/4 cups 
of sugar as 1¼ cups of sugar. A parallel step is to have answers that are whole 
numbers, such as 4 fourths or 8 fourths, and to convert from fourths to whole 
numbers. Likewise, one can do conversions from whole numbers to unit frac-
tions. Simple examples of multiplication and division of amounts stated in unit 
fractions can be introduced, e.g., given a recipe requiring 2 fourths of a cup of 
sugar, how many batches of the recipe can we make with two cups of sugar. 
Initially these problems would be accompanied with diagrams to help organize 
students’ thinking.

These arithmetic experiences are reinforced and extended by the use of 
unit fractions in measurement problems. It is important that all whole num-
ber arithmetic be interpreted in terms of measuring lengths, e.g., addition is 
concatenation of lengths; multiplication is repeated concatenation of lengths. 
Thus the number line has a natural interpretation as distances from 0 (the start 
point). Unit fractions arise naturally in measuring lengths. Unit fractions also 
have a natural role in the measurement of time, money, and later area and 
volume. Note that the transition from multiplication by whole numbers, i.e., 
repeated addition, to multiplication by fractions is a natural extension in linear 
measurements: if bricks are 8 inches long, how would long would a row of 3½ 
bricks be?

While standard rulers are subdivided into halves, fourths, eighths, and 
sometimes sixteenths of an inch, students should have access to rulers with 
different types of subdivisions, e.g., in 5ths and in 10ths of an inch. In measur-
ing lengths, students are initially equating whole numbers with lengths. Over 
time, it becomes natural to view all lengths as numbers, and an intuitive feeling 
for numbers as points on the number line develops. This is why Berkeley math-
ematician Hung-Hsi Wu likes to define fractions in terms of the number line.

When fractions are discussed in a collegiate quantitative literacy course, 
students are unlikely to be familiar with the definition of a fraction as a multi-
ple of a unit fraction. The newness of this approach can be an excuse to review 
quickly several steps in the development sketched in the preceding paragraphs. 
It is important constantly to pose unit fractions problems in applied settings so 
that the ‘unit’ in ‘unit fraction’ has meaning. An example is how high will a 
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pile of 4 notebooks be if each notebook is 5/8 thick. The answer would first be 
found in terms of 1/8ths and then converted to whole inches. A more advanced, 
inverse version of this problem would be, how many notebooks that are 5/8 
thick can be piled into a box that is 2½ feet deep.

We noted above that unit fractions are derived in students’ minds from 
counting numbers as follows: a pie divided into fourths is split into equal piec-
es which count to 4. To give a sense of the cognitive challenge students face in 
moving beyond this image of unit fractions, we cite a scene from a demonstra-
tion class of fifth graders led by Deborah Ball at the Park City Mathematics 
Institute in summer 2006. When students were asked to go to the blackboard 
and highlight 1/8th of a collection of 24 circles that had been drawn, one student 
first divided 8 into 24 to get 3, and then he proceeded to partition the set of 24 
circles into groups of 3. He had to check that 8 groups of 3 balls completely par-
titioned the set of 24 balls before being able to say that 3 balls were 1/8 of the set 
of 24 balls. That is, the concept of 1/8 of a something, and implicitly the general 
concept of a unit fraction, did not exist in his thinking. He only could conceive 
of dividing something into 8 equal parts, a concept based on counting numbers.

Here is another example of the trouble that 
students have in moving beyond the equal divi-
sion model (Tzur, 2006). Consider the two rectan-
gles on the right, both with the same dimensions. 
The upper one is divided into 4 equal sections. 
The lower one is divided into 8 unequal sections. 
We are told that section A in the upper rectangle 
is the same size as section B in the lower rectangle. The question is, what frac-
tion of the lower rectangle is section B?

Many middle school students and their teachers will assert that section B 
is our fourth of the upper rectangle but that one cannot tell what fraction it is 
of the lower rectangle. Many adults may have the same problem. This example 
shows the limitations of pictorial models of fractions.

Units
To illustrate the role of units in working with fractions, consider the following 
problem:

Some balls are taken from a box and 15 balls are left. This number 15 
is three quarters of the number of balls that started in the box. How 
many balls started in the box?

The reasoning for solving this problem involves two types of units. The prob-
lem can be restated: if we know 3 fourths of a quantity, what is 4 fourths of 

A

B
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the quantity. The key is to think in terms of fourths. If one fourth is our unit, 
then the problem comes, if three units equal 15, what do four units equal. The 
natural intermediate step in the solution is to determine what one unit equals. 
We get that one unit is 15÷3 = 5, balls, and the boxful of 4 units equals 4  5 
= 20 balls.

While fourths were the units for initially analyzing the problem, 5’s were 
the units involved in determining the final answer. One could say that one unit 
equals our fourth of a boxful, and then restate that unit as equal to 5 balls. One 
could also look at these two units as a ratio: 5 balls per fourth of a boxful. 
Analyzing relationships between two or more units underlies the solution of 
almost all real-world problems involving fractions. Many educators refer to 
the (implicit or explicit) use of units to solve such a problem as multiplication 
reasoning. Such reasoning is a prerequisite to solving fraction problems.

The problem could also be modeled algebraically as (3/4)x = 15 and solved 
for x to obtain x = 15 ÷ (3/4), with the right-hand side computed with the in-
vert-and-multiply rule for division by fractions. That rule, of course, yields the 
same calculation as in the previous analysis: divide 15 by 3 and multiply the 
result by 4 (or the order could be inverted). It is preferable that students be able 
to perform the reasoning described above than that they memorize (and soon 
forget) the invert-and-multiply rule for fraction division.

One learning aid heavily used in East Asian countries is dia-
grams. The 1999 TIMSS Video Study (NCES, 2003) found that 
83% of the problems in 8th grade mathematics lessons in Japan 
used diagrams or drawings while the percentage in the U.S. was 
just 26%. For example, when problems like the one above are 
first encountered, students would see a diagram like the one on 
the right to point them towards the solution. College students 
who are being reacquainted with fractions should be asked to 
draw similar diagrams to help their initial reasoning.

Many rate problems have a similar structure to the problem about balls in 
a box. For example:

If a car going at a constant speed covers 48 miles in ¾ of an hour, 
how far will it go in one hour? Or equivalently, how fast is it going 
(in miles per hour)?

To solve this we must first focus on measuring time in fourths of an hour. 
Then we switch to the dual unit of 16 miles, the distance traveled in a fourth 
of an hour.

A nice grammatical analogy, often attributed to Ken and Herb Gross, is 
sometimes helpful for understanding the relationship between numbers and 
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units. They call numbers ‘adjectives’ and they initially use these ‘adjectives’ 
only in the context of modifying a ‘noun’ such as 5 pencils or 2/3rds of a pie. 
The nouns are then extended to include units of measurement and units defined 
in terms of other adjective-noun pairs such as 4 (boxes of 500 pencils) and 5 
(eighths of an inch).

Converting between units
One of the critical mathematical building blocks for working with fractions is 
equivalent fractions, different fractions that represent the same rational num-
ber, e.g., ½ or 2/4 or 5/10 or 13/26, etc. However, the general topic of equiva-
lent representations of a quantity arises repeatedly in measurement problems, 
e.g., ½ foot = 6 inches, or 50 cents = 10 nickels = 5 dimes = 2 quarters = ½ 
dollar, as does the issue of finding a new, common representation for adding 
quantities in different units, e.g., adding 1/3 foot + ¼ foot by converting to 
inches, or adding 2 dimes and 1 quarter by converting to cents.

Equivalent fractions are a particular case of a more general mathematics 
topic, namely converting a number expressed in terms of one unit to another 
unit. Finding a new unit for representing different quantities arises in word 
problems involving multiplication and division.

Consider the problem:

A brick is 8 inches long. How many bricks must be placed end to end 
to reach 10 feet?

First we express the length of 10 feet in terms of inches—120 inches— 
using the conversion rule 1 foot = 12 inches. This is the first change of units. 
Then we convert the length in inches into another unit, brick lengths, using 
the conversion rule 1 brick length = 8 inches. The first conversion involved a 
multiplication and the second a division.

The following solution strategy follows the spirit of unit fraction examples 
in the previous section. After noting that one brick length is 2/3rds of a foot, 
one converts the total length from feet to 1/3rds of a foot. This is an easy con-
version—multiply by 3—to keep straight in one’s mind, and work with unit 
fractions continually reinforces such conversion strategies. So now the length 
is 30 1/3rds of a foot. Since each brick is 2 1/3rds of a foot long, we need 30/2 
= 15 bricks.

The roles of the units can be inverted. We look at the problem in terms 
of brick lengths per foot: 1 foot = 1½ brick lengths. Then 10 feet = 1½  10 
= 15 brick lengths. This problem illustrates the fact that any time we perform 
multiplication or division in solving an applied problem, we are explicitly or 
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implicitly converting units. Moreover, there are a number of choices for units. 
In this case, inches, feet, and brick-lengths.

Let us recast this problem in a business setting. Given that an adult pays 
$40 for admission to an amusement park, what level of attendance is needed to 
generate $100,000 in a day? Answer: 100,000/40 = 2,500 adults. If one wanted 
to plan for the level of services needed in the park and the cost of these servic-
es, then one would probably find it useful to think simultaneously in terms of 
multiples of 2,500 people (demand) and $100,000 (available income). A natu-
ral extension of this problem would incorporate the fact that children pay, say, 
$30 for admission. Now many ratios of income and expenses come into play in 
analyzing demands and income from various mixes of adults and children.

Let us next consider a word problem involving three units. (It is the first 
word problem to appear in the 5th grade Singapore mathematics textbook 
(Singapore Math, 1997)):

Mrs. Li bought 420 mangoes for $378. She packed them into packets 
of 4 mangoes each and sold all the mangoes at $6 per packet. How 
much money did she make?

The initial units that appear in the problem statement are mangoes and dol-
lars. Later in the problem statement, packets enter. We need to convert units for 
measuring mangoes from individual mangoes to packets of 4 mangoes. Given 
that 4 mangoes go into packet, we divide 420 by 4 to obtain 105 packets. Now 
we convert our units for measuring mangoes from packets to value in dollars. 
The conversion factor is that one packet yields $6 dollars, and so we multiply 
for this conversion to obtain a value of 105  $6 = $630. Finally, we have cost 
and income in the comparable units, dollars, and so the amount of money made 
in this activity, $630 – $378, can be computed.

Another way to approach this problem is to look for a way to convert 
directly from units of mangoes to units of money. This conversion requires 
determining a rate of income per mango. Since 4 mangoes in a packet sell for 
$6, we obtain a rate of $6/4 (= $1½ per) per mango.

This problem illustrates the fact that calculation with a fraction can fre-
quently be recast as a short cut for a two-step calculation involving a multipli-
cation and a division with whole numbers.

Let us now use units-based reasoning to analyze the following problem of 
fraction multiplication: 2/3  4/5 = ?. Interpreting 2/3 as 2 thirds [=2(1/3)], we 
first need to find 1/3 of 4 fifths. We are initially stuck because 1/3 of 4 is not a 
whole number. We change to a new unit that is sure to work, namely 1/(35). 
So we convert 4 fifths to 12 fifteenths [= 12(1/15)]. We can find 1/3 of 12 fif-
teenths by dividing 12 by 3; it is 4 fifteenths (4/15). Finally we multiply this 
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amount by 2 to find 2  [4(1/15] = 8/15. Diagrams can help with this problem. 
For example, 4/5 could initially be depicted with a rectangle partitioned by 
horizontal lines into 5 equals parts with the lower four parts shadowed. Then 
the rectangle could be subdivided with 3 vertical lines into 15 equals parts. One 
third of the 12 shadowed parts is found, etc.

Students’ knowledge about units can also be used to revisit whole number 
addition and subtraction and to appreciate the role of conversion among decimal 
units in the standard algorithms of arithmetic. The place value notation is now 
seen as a system of related decimal units. The key steps of carrying in addition 
and borrowing in subtraction involve converting between consecutive decimal 
units. The standard multiplication and division algorithms can be studied in 
terms of how they combine partial computations in different decimal units.

We conclude this section with an important subtlety about the role of units 
in division. People often say that division is the ‘inverse’ operation of multi-
plication. However, there are two very distinct interpretations of how division 
is the ‘inverse’ of multiplication. Interpreting multiplication as repeated addi-
tion, the equation 4  5 = 20 says that the sum of four 5’s is 20. Inverting this 
process, 20 ÷ 5 = 4 could be interpreted as saying that 4 is the number of 5’s 
that need to be summed to get 20. What then is the interpretation of 20 ÷ 4 = 
5 in terms of the multiplication 4  5 = 20? It is, what number when summed 
4 times yields 20. A more familiar way to state this is, when we divide 20 into 
4 equal parts, what is the size of each part. The first problem 20 ÷ 5 = 4 was a 
change of units: we count numbers by 5’s instead of by 1rs. The second prob-
lem is a partitioning situation, although it can also be interpreted with a change 
of units as follows: what should the units be if we want to 4 units to equal 20.

Concluding remarks
In this essay I have tried to make the case that understanding fractions well by 
relating them to units is both important and intellectually rich. It is definitely 
worthy of a college level course in quantitative literacy. More generally, frac-
tions are a much richer mathematical construct than most people realize. This 
complexity is reflected in the fact that mastery of fractions was not normally 
required for university admission just 100 years ago, only whole number arith-
metic was required (DeTurck, 2000).

However, today fractions arise frequently in daily life as percentages, rates 
and proportions. The details of teaching these applications of fractions to col-
lege students have been well explored by many others in the quantitative litera-
cy movement. What is not as well appreciated is their connection to multi-step, 
whole-number word problems, as presented in this essay.
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We note that greater attention to units also brings mathematics instruction 
closer to science instruction, where units play such an important role.

We close with a concrete example of the challenges in implementing 
the program outlined above. We refer again to the Park City model class of 
Deborah Ball’s where students were asked to find one eighth of 24 balls drawn 
on the blackboard. One student divided 8 into 24, and, based on his answer of 
3, partitioned the 24 balls into 3 groups of 8 each. Next he marked one ball 
in the first group of 8. However, the student then stopped and gave 1 as the 
answer. A cognitive specialist watching the students speculated what had gone 
wrong. Like many other students of his age, this student had trouble keeping 
track of more than two units at one time. He reorganized the problem of finding 
1/8th of the whole group of 24 by first breaking 24 into 3 groups (units) of 8’s. 
He then determined what 1/8th of a group of 8 was, but had lost track of the 
relationship between the original group of 24 and the group of 8. 

Keeping track of multiple units is an example of a critical cognitive skill 
that mathematicians generally take for granted. Thus, to better prepare students 
to learn fractions, one needs not only to understand the proper mathematical 
development of underlying concepts, such as units, but also to understand the 
hurdles that students face when they try to learn these concepts.
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The secondary school mathematics curriculum emphasizes algebra as a nec-
essary preparation for college calculus and statistics. Approximately 40% of 
college graduates, however, are in non-quantitative majors that do not require 
calculus or statistics and have little need for algebra beyond proportional and 
linear reasoning. Yet the elementary school curriculum presents common frac-
tions symbolically as an introduction to high school algebra. This approach 
may “turn off” some very bright students, both those who might otherwise 
be interested in careers in science, technology, engineering and mathematics 
(STEM) and those who may graduate from college with majors such as jour-
nalism or political science that do not require much mathematics. Even non-
STEM students need to be quantitatively literate to excel in their fields and to 
be capable citizens in a modern data-based democracy where most social and 
political issues involve quantitative reasoning. 

To increase the effectiveness of quantitative literacy throughout the school 
curriculum, this paper explores the possibility of delaying, minimizing, or 
eliminating the manipulation of common fractions as mathematical objects and 
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of replacing it with a more applied study of fractions in the context of percent-
ages and rates. 

• A greater focus on percentages and rates could enhance the quantitative 
literacy of all students and improve the motivational support provided 
by parents and teachers while still introducing important topics such as 
scaling, conversion, changing units, and symbolic notation. 

• A greater focus on the ordinary English grammar involved in 
communicating about rates and percentages would allow students 
to become better consumers of information presented in tables and 
graphs. 

• A greater focus on the uses of ratios would allow educators to prepare 
students for more advanced topics such as standardizing and Simpson’s 
paradox that are common in everyday media but rarely covered in the 
current school curriculum. 

This paper also discusses the possibility of introducing these quantitative lit-
eracy topics either as a pre-algebra bridging course or as a quantitative or sta-
tistical literacy course in place of algebra II for those students interested in 
non-quantitative majors in college.

Goals of mathematics education
The National Council of Teachers of Mathematics (NCTM), the principal pro-
fessional society for K–12 mathematics education, says that its goal is to en-
sure “mathematical learning of highest quality for all students” (NCTM, 2007). 
This broad goal leaves open the choice of topics students should learn and the 
order in which they should be learned. In practice, it appears that elementary 
school mathematics prepares school children for high school mathematics, 
which in turn prepares students for college mathematics. Thus, the choice and 
order of topics at the school level may be influenced—if not driven—by the 
mathematical needs of students at college.

The mathematical needs of college students can be inferred from the 
mathematics and statistics courses they take—data that is gathered regularly 
by a survey by the Conference Board of the Mathematical Sciences (CBMS). 
According to the 2000 CBMS survey (Lutzer, D, J., J. W. Maxwell, & Rodi, 
2002) of U.S. four-year colleges during the 2000 fall semester: 

• 217,000 students took remedial mathematics [General Mathematics 
(30,000), Elementary Algebra (70,000) and Intermediate Algebra 
(117,000)];

• 723,000 took introductory pre-calculus mathematics [College Algebra 



Schield: Quantitative Literacy and School Mathematics ��

(211,000), Elementary Functions (105,000), Mathematics for Liberal 
Arts (86,000), Finite Mathematics (82,000) and Mathematics for 
Elementary School Teachers (68,000)]; 

• 297,000 took Calculus I; and 
• 155,000 took Elementary Statistics in mathematics/statistics 

departments.
The courses most frequently mentioned by departments of mathematics 

as one of the top three courses taken by K–3 education majors were a multi-
term mathematics course designed for elementary education majors (48%), 
followed by College Algebra (42%), Mathematics for Liberal Arts (39%), a 
single-term mathematics course designed for elementary education students 
(32%), and statistics (29%). The courses most frequently mentioned by depart-
ments of statistics as one of the top three statistics courses taken by K-3 educa-
tion majors were elementary statistics (63%), statistical literacy (33%), and a 
single-term statistics course for elementary education majors (26%).

While the CBMS survey is the most accurate survey available of math-
ematics and statistics courses taken by U.S. college students, it has three limi-
tations. First, it is a fall-only survey, so courses that are taught year-round 
(e.g., college algebra and statistics) may have different year-round enrollments 
than those taught primarily in the fall (e.g., Calculus I). Second, it does not 
count those students or courses taught outside mathematics and statistics de-
partments. This is a problem for statistics at four-year colleges since statistics 
is often also taught in other departments such as business, psychology, and 
sociology. Or as the CBMS report noted, “in fall 2000 there were fewer than 
100 statistics departments in the U.S., and almost 1,400 mathematics depart-
ments. Consequently the numbers reported by statistics departments would not 
include the students from the vast majority of colleges.” Third, there is no way 
to link courses with students—we cannot calculate what percentage of college 
graduates take a given course as their last course in mathematics. For example, 
college algebra may be taken as a prerequisite for calculus by some and as a 
terminal course for others. 

These three limitations of the CBMS survey are important in identifying 
the reasons that college students take a mathematics course. Is it because of 
general education requirements, the requirements of their majors, their per-
sonal interests, or their need for remedial courses as a prerequisite for any of 
the foregoing? 

An alternate approach to identifying the mathematical needs of college 
students is to examine bachelor’s degrees earned by major. In 2003, there were 
1.35 million bachelor’s degrees awarded at U.S. four-year colleges and univer-
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sities (U.S. Census Bureau, 2006, Table 289). If we assume that calculus was 
taken by all students graduating in science, technology, engineering and math-
ematics (STEM), then 12% of college graduates were required to take calculus. 
If we assume that statistics was taken by all students graduating in business, 
the social sciences, psychology, health sciences and biology, then 48% of col-
lege graduates were required to take statistics. Even though some students may 
take calculus or statistics even if not required by their major, and some majors 
may require calculus as a prerequisite for statistics, this leaves approximately 
40% of college graduates with majors that do not generally require a specific 
mathematics course. These non-quantitative majors include education, visual 
and performing arts, communication and journalism and English, as well as 
the liberal arts, humanities, general studies and interdisciplinary studies. Many 
of these students must take one or more college mathematics courses as part 
of their general education requirements. But the lack of a specific mathematics 
requirement may tell students in these non-quantitative majors that their major 
department sees no direct benefit of mathematics for their major. 

Even the role of mathematics in general education is changing. At some 
schools, college algebra no longer satisfies a quantitative general education 
requirement. For example, Arizona State University recently removed college 
algebra from the list of courses students can use to fulfill the numeracy require-
ments for general studies. “The department has taken this action because it 
believes students requiring only one mathematics course in their college expe-
rience should be introduced to mathematics that is more applied in nature. We 
further believe any student taking college algebra should have every intention 
of taking another mathematics course” (Isom, 2004). Briggs (2006) reviews the 
“algebra dilemma” in designing a successful liberal arts mathematics course 
and argues that “less could be better.” He suggests that we should “avoid doing 
algebra when there is no ulterior purpose and let the applications determine the 
necessary mathematics.” 

Unfortunately, there is no summary of the mathematics courses required 
for general education at U.S. colleges and universities. Courses such as col-
lege algebra, statistics, mathematics for liberal arts, quantitative literacy and 
statistical literacy are often used for this purpose along with courses designated 
as satisfying a quantitative reasoning requirement. For a review of the top-
ics commonly found in quantitative literacy courses, see Gillman (2006) for a 
mathematics-centered review and Madison (2006) and Schield (2004a) for a 
broader view. 

Overlaid on the issue of students’ mathematical needs is the issue of at-
titudes towards mathematics. All too many students have a negative attitude 
toward mathematics. The Third International Mathematics and Science Study 



Schield: Quantitative Literacy and School Mathematics �1

(TIMSS, 1999, Exhibit 4.10) found that 35% of the U.S. 8th graders surveyed 
say they have a positive attitude toward mathematics, 50% say their attitude is 
between negative and positive (neutral) toward mathematics and 15% say they 
have a negative attitude. For the girls in this study, the percentages were 32%, 
52% and 16%, respectively. Since these 8th graders typically have not yet had 
algebra or geometry, a relevant explanation may be the teaching of fractions.

Mathematics for the other 40%
School mathematics has many goals, one of which is to provide students with 
the mathematical concepts and training they need to function as quantitatively 
literate citizens in a modern democracy. Training students to study mathemat-
ics or science in college is another goal. But if this STEM goal conflicts with 
the quantitative literacy goal, the algebra-centered school mathematics cur-
riculum may become dysfunctional. It may inadvertently encourage bright 
college bound—but non-mathematics oriented—students to avoid quantitative 
thinking even when it is appropriate and important.

The 40% of college graduates with non-quantitative majors are more like-
ly to become elementary school teachers, journalists, lawyers, policy makers 
and religious, social and political leaders. These are the students who are likely 
to take courses with titles like Mathematics for Liberal Arts and Statistical 
Literacy. These liberal arts majors may not need an algebra-centered curricu-
lum to help them reason quantitatively, that is, to form sound arguments and 
make informed decisions about matters for which numerical evidence is of-
fered. But all too many humanities majors are innumerate, or quantitatively 
illiterate. Among other deficiencies, they have surprising difficulty reading 
tables of percentages (Atkinson and Wills, 2007) and Schield (2006a). 

Addressing this conflict does not mean supporting a watered-down math-
ematics curriculum for potential STEM students, rather, just the opposite. A 
slightly different approach to the teaching of fractions can teach quantitative 
relationships that are useful to non-STEM students, that can challenge STEM 
students, and that might even attract bright non-STEM students into STEM 
majors in college. A first step along this road is to identify the quantitative liter-
acy needs of college-educated citizens, in particular, of students in the arts and 
humanities (e.g., English, history, philosophy, aesthetics, and political science).

Student weaknesses related to mathematics
Lutsky (2006) analyzed writing portfolios of 200 students at Carleton College, 
a highly selective liberal arts college. He found that a third of these college 
students failed to use quantitative reasoning (QR) when it should have been 
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central to their analysis, and nine in ten failed to use quantitative reasoning 
when it was peripheral but of potential benefit to their argument.

An earlier analysis prepared for the International Association for Statistical 
Educators identified several categories of problems involving quantitative or 
statistical literacy (Schield, 2004b) as follows. 

Problems comparing counts or amounts using ordinary English: Students know 
that “8 is 6 more than 2” and that “8 is 4 times [as much as] 2.” But they may 
mistakenly think “8 is 400% more than 2.” They are quite comfortable—but 
mistaken—in saying “2 is 4 times less than 8.” They are amazed that 15% is 
50% (but not 5%) more than 10%.When told that “Jane is half as old as Tom; 
Tom is twice as old as Mary” and asked if Jane and Mary are the same age, 
their answer, “Yes,” is correct.  When told that “Jane is 50% younger than Tom; 
Tom is 50% older than Mary” and asked if Jane and Mary are the same age, 
their answer, “Yes,” is incorrect. 

Problems describing percentages and rates in ordinary English: Percentage 
and rates are common in graphs, yet one study found that one college student 
in five could not correctly read the simple pie chart of percentages shown in 
Figure 1 (Schield, 2006a). Percentages were featured in 70% of the graphs 
in USA Today On-Line Snapshots (Schield 2006c), yet many students were 
unable to properly interpret their meaning as evidenced by Figures 2–5. In 
reading Figure 2, students mistakenly concluded that 24% of all adults have 
two dogs—rather than 24% of all dog owners have two dogs.

In Figure 3, some students thought the bar graph was wrong since the 
percentages add to more than 100%—not realizing that the alternatives were 
non-exclusive in the survey. In Figure 4, some students mistakenly concluded 
that 43% of the happy people surveyed are married rather than that 43% of the 
married people surveyed are happy.

In Figure 5, the percentages add to 92% and the age groups are exclusive 
(but not exhaustive), so students cannot tell whether 29% of those ages 21–25 
received a DUI or 29% of those receiving a DUI are ages 21–25. In Figure 6,

SMOKERS

Other:
40%

Catholics:
20%

Protestants:
40%

 Figure 1. Pie Chart Figure 2. Bar Chart (Sum = 100%)



Schield: Quantitative Literacy and School Mathematics ��

 Figure �. Bar Chart (Sum > 100%) Figure 4. Bar Chart (Sum < 100%)

 Figure �. Bar Chart (Sum ~ 100%) Figure �. Bar Chart (Sum ~ 100%)

the percentages add to 98% and the income groups are exclusive and exhaus-
tive so students cannot tell if 15% of guests from low-income households bring 
gifts or if 15% of guests who bring gifts are from low-income households. 

Similar weaknesses are apparent in reading tables of rates and percent-
ages. In reading Table 1, 19% of students surveyed mistakenly thought the 
circled 25% said that 25% of females are blacks rather than 25% of blacks are 
female (Schield, 2006a). In reading Table 2, among those surveyed, 55% of 
students, 53% of professional data analysts and 30% of college faculty mistak-
enly thought the circled 20% said that 20% of runners are female smokers (or 
did not know) rather than 20% of female smokers are runners. These error rates 
are important since percentages and rates were featured in 40% of the tables in 
the 1997 U. S. Statistical Abstract.

College students also have considerable difficulty determining part and 
whole in ratios presented in tables and graphs. In reading Table 3, students

 Table 1. 10% Row Table Table 2. Two-way half table
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were asked to describe the 59.3% 
in the cell for black males. About 
a third of the students mistakenly 
concluded that 59.3% of over-
weight or obese adults were black 
males rather than that 59.3% of 
black male adults are overweight 
or obese. They seemingly ignored that this incorrect statement was highly dis-
proportional since less than 7% of U.S. adults are black males. They ignored 
the fact that the table Totals are averages—not sums.

Augsburg College students studying statistical literacy have difficulty 
interpreting percentages when they are expressed in ordinary English. They 
are not sure if “the percentage of men who are runners” is the same as “the 
percentage of men among runners.” When given “20% of men who run are 
smokers,” they often conclude that “20% is the percentage of men who run 
who are smokers.” They cannot see a difference between “the percentage of 
male runners who smoke” and “the percentage of men who run and smoke.” 
They are exposed to sports grammar (e.g., “percentage of passes completed” 
or “percentage of completed passes”) where there is a natural whole so the 
syntax is irrelevant and both have the same meaning. Without training, they 
don’t see that “the percentage of male smokers” has no natural whole and 
could be “the percentage of males who are smokers” or “the percentage of 
smokers who are male.” 

Problems comparing percentages and rates using ordinary English: A 
study involving Figure 1 dealing with the incidence of smoking in relation 
to Protestant/Catholic identity found that 60% of students and data analysts 
surveyed mistakenly concluded from this table that “Protestants (40%) are 
twice as likely to be smokers as are Catholics (20%)” (Schield, 2006a). A 
correct statement would be, “Protestants (40%) are twice as likely among 
smokers as are Catholics.” The comparison of ratios, rates and percentages 
in ordinary language requires using English in a very precise manner. Small 
changes in syntax can produce large changes in semantics. 

Problems involving weighted averages of measurements or percentages: Steen 
(2001, pp. 11) described “understanding the behavior of weighted averages 
used in ranking colleges, cities, products, investments and sports teams” as a 
key topic in quantitative literacy for citizenship. Students in non-quantitative 
majors may not realize that many of the statistics we read are not simple 
averages—they are weighted averages where the average depends on the 
number in each component of the mixture. 

Table �. Percentage overweight or obese
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College students have trouble comparing weighted averages for two 
groups with different mixtures in their respective populations. Supposing we 
find that the average weight of college seniors at St Thomas is 30 pounds more 
than the seniors at St. Catherine’s. This could be an indication of overweight 
or obesity at St. Thomas. But students at St Catherine’s college are mainly 
women while those at St. Thomas are equally split. The 30 pound difference 
could reflect different mixtures, that is, the difference in the number of men 
and women at the two colleges. 

College students have even more difficulty with weighted averages when 
they involve two groups with different mixtures and when both the outcome 
and the mixture are expressed as percentages. Suppose the percentage of col-
lege students who go on to graduate school is much higher at St. Thomas than 
at Augsburg. This might reflect a difference in the quality of the education. But 
it might reflect a difference in the mixture of students. Suppose that children 
of college-educated parents are more likely to go to graduate school than chil-
dren whose parents are not college educated. Suppose that college-educated 
parents are more prevalent among students at St. Thomas than among students 
at Augsburg. The failure to take into account the influence of this third factor—
college educated parents—can confound the association between the two col-
leges and the percentage of their graduates who go on to graduate school. 

Figure 7 illustrates a graphical technique for illustrating and standardizing 
weighted averages.

Consider the death rates at two hospitals: City and Rural.  The overall 
death rate at each depends on the death rates for the two groups of patients:

Standardizing Hospital Death Rates

Rural Hospital

City Hospital

Percentage who are in “Poor” Condition

D
ea

th
R

at
e

0%
0% 20% 40% 60% 80% 100%

1%

2%

3%

4%

5%

6%

7%

Figure 7. Standardizing Hospital Death Rates
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those in poor condition (right side) and those in good condition: those not in 
poor condition (left side).  The overall average is a weighted average—the 
average of the death rate for the two groups weighted by their prevalence: the 
percentage of patients who are in poor condition (horizontal axis).  

In this case, the overall death rate is higher at a City Hospital (5.5%) than 
at a Rural Hospital (3.5%).  Obviously patients in poor condition (right side) 
are much more likely to die than those in good condition (left side).  Patient 
condition could be confounded with the hospitals and thereby influence the 
observed association between hospitals and death rates.  Suppose that patients 
in poor condition are much more prevalent among patients at City Hospital 
(90%) than among those at Rural Hospital (30%).  

When given the death rates for patients in poor and good condition for 
each hospital, students can standardize the prevalence of the confounder to 
the overall average (60%) and see that in this case the standardized death rate 
is reversed.  The standardized death rate—the death rate obtained after taking 
into account the influence of a related confounder of patient condition—is 
now higher at Rural Hospital (5%) than at City Hospital (4%).   This reversal is 
an example of Simpson’s Paradox—a phenomenon that is all too common in 
everyday comparisons of averages, rates and percentages.   This simple graphi-
cal technique illustrates how one can take into account the influence of a third 
factor on an average, a rate or a percentage. 

More examples can be found in Schield (2006b) and Terwilliger and 
Schield (2004). Lesser (2001) provides a comprehensive review of weighted 
averages—the basis of Simpson’s paradox. 

Problems concerning student attitudes. It may seem inappropriate to include 
attitudes when determining content, especially among primary school students, 
but by secondary school, if not by middle school, student attitudes affect 
student choices and performance. 

Business majors at Augsburg College in spring 2003 were surveyed by the 
author on their major within business and on their attitude toward mathematics. 
Majors were classified in two groups: non-quantitative (management, interna-
tional business, management information systems and marketing) or quantita-
tive (accounting and finance). Attitudes toward mathematics were classified 
into two groups: “like math” (strongly like or like) and “dislike math” (neutral, 
dislike or strongly dislike). The result: 30% of quantitative majors and 70% of 
non-quantitative majors “dislike” mathematics. Almost 60% (40%/70%) of the 
students in management, international business, MIS or marketing are attribut-
able to their dislike of mathematics. Note that this association does not say that 
their attitude toward mathematics caused students to choose non-quantitative 
majors, but the association suggests and supports this claim. 
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Attitudes are important in another way. Schau (2003) noted, “Many of us 
believe that attitudes impact students’ achievement, [their] course completion, 
[their] future course enrollment, and [their] statistical thinking outside of the 
classroom.” The less value students see in what they are learning, the less mo-
tivated they are to participate, to learn, to remember what they learned, and to 
use what they learned. 

Interestingly, Schau found that college students see less value in studying 
statistics after completing the introductory research-oriented statistics course 
than they did before taking the course. It may be that high school students see 
less value in mathematics after taking algebra than they did before. It may be 
that grade school students see less value in mathematics after studying fractions 
than they did before. If this were so, it would represent a serious problem—even 
if immaturity is the underlying cause. Student attitudes affect their willingness 
to take further courses in a subject. Those grade-school children who see less 
value in mathematics are less likely to take the next courses in mathematics 
or, if required to do so, their performance may reflect their negative attitude. 
In the end, they may be far less likely to pursue STEM majors in college. 

School students may not like multiplication or division, and they may not 
see much value in these operations immediately. But their teachers, parents and 
older peers are generally united in claiming that these skills are important—
even in the age of computers and calculators. But when students and their older 
peers see little value in a subject such as manipulating fractions, students may 
start to question whether their teachers really have their best interests at heart. 

‘Attitudes’ includes the attitudes of teachers and parents, which may ac-
count for much—if not most—of the difference in academic performance 
among K-6 school children. If teachers do not see the value in material re-
quired for a majority of their students, this may affect their attitude: they will 
not be excited about and persuasive in teaching such material. If parents do 
not think their children should learn the material, if they cannot see that the 
material is useful or how their children will benefit, their negative attitude may 
influence children in ways teachers cannot overcome. 

Teachers may have more influence on student learning than does the 
choice of topics in a curriculum and parents may have more influence on stu-
dent learning than do teachers. 

Call for change
The NCTM has done much to review the mathematics curriculum, but more 
can be done to improve the school curriculum for the 40% of college students 
in non-quantitative majors. 
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Ideally the mathematics curriculum should help each student use their 
mind—at their level of understanding—to understand the world in quantita-
tive terms.  Mathematics provides some simple quantitative devices for taking 
into account related factors.  Two-group comparisons take into account the size 
of a related factor chosen as the basis for the comparison either as a difference, 
a ratio or a percentage difference.  Rates and percentages take into account the 
size of the group.  Two-group comparisons of rates and percentages take into 
account both the different sizes of the two groups and the ratio for the group 
chosen as the basis for the comparison.  Standardizing takes into account the 
influence of a related factor.  Taking into account the influence of a related fac-
tor is what links the mathematics of percentages, rates, comparisons and stan-
dardization to quantitative literacy with its focus on mathematics in context.

Here are some recommendations:

1. Emphasize ordinary English. Mathematics educators should consider how 
ordinary English can be used in preparing students for algebra. Some might 
argue that the words of ordinary English cannot substitute for symbolic algebra. 
Yet English can convey quantitative ideas. Most—if not all—arithmetic 
operations and algebraic relationships can be expressed in ordinary sentences. 
Ordinary English can be used to make quantitative statements that are clear 
and unambiguous. Everyday graphics (e.g., pie and bar charts) can display the 
semantics of percentages just as Venn diagrams display the overlap between 
two groups or variables. 

Including a wider-variety of ordinary English forms in teaching math-
ematical relationships may help improve the attitudes of school teachers and 
parents. Parents and teachers may encourage students to work harder in math-
ematics if they understand the value of what is being taught. 

2. Distinguish percentages from fractions. Mathematics educators might 
rethink the relation between the teaching of percentages and the teaching of 
fractions. Teaching the manipulation of common fractions that are ratios of 
integers can provide an introduction to algebra which in turn provides a basis 
for calculus and statistics. But do college students in non-quantitative majors 
need to manipulate common fractions? They certainly need to manipulate 
percentages. But are percentages fractions? 

Mathematically, percentages are fractions with a denominator of 100. But 
operationally percentages are not common fractions. To add common integer-
ratio fractions such as ½ and ¾, one must scale at least one of the fractions to 
give them a common denominator so they can be added. But percentages—by 
their very nature—all have the same denominator: 100. There is never any 
need to rescale a percent before adding or subtracting. Operationally, percent-
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ages are much closer to integers or decimal fractions than they are to common 
fractions. 

Consider a well-known mistake involving fractions: 1/3 + 1/5 = 2/8. In 
making this mistake, students apply whole-number addition where it is not 
appropriate. But would students add 33% to 20% and get 25%?  Not likely!  
The mistake with common fractions seldom occurs when the fractions have a 
common denominator. 

3. Be aware of how students and adults—even very bright people—avoid 
common fractions. How do they do this when dealing with everyday units 
such as time, money, distance, weight and volume? One way is to shift to 
a smaller unit so the fraction becomes an integer. In this way, half an hour 
become 30 minutes, half a dollar becomes 50 cents, half a foot becomes 6 
inches, half a pound becomes 8 ounces and a third of a tablespoon becomes a 
teaspoon. Percentages function in the same way: a tenth of a unit becomes 10 
percent—where ‘percent’ (one-one hundredth) functions as the new smaller unit. 

Of course one can always go smaller than the smallest common unit—be 
it a second, a cent, an inch, an ounce, a teaspoon or a percent. Are fractions 
required? Yes, but not as often and they may not be common fractions. We can 
use decimal fractions. Mathematically, decimal fractions are a type of common 
fraction. Operationally, decimal fractions are closer to whole numbers than to 
common fractions. Now this may be questionable if students mistakenly think 
0.17 > 0.7 because 17 is bigger than 7. But if the arithmetic of decimal frac-
tions is easier than the arithmetic of common fractions—easier for teachers to 
teach, for parents to support and for students to learn,—then this would support 
the claim that decimal fractions are closer—operationally—to whole numbers 
than to common fractions. 

Learning to add fractions with different denominators may be a critical 
step in a child’s understanding of rational numbers. But do students in the 
humanities or educated citizens in a modern democracy need to distinguish 
rational numbers from irrational numbers? Do they need to know how to di-
vide one common fraction by another when the few times they encounter this, 
they can convert them both to decimal fractions and use integer arithmetic to 
calculate the result? 

There are three distinct situations that arise in adding common fractions:
• Those having identical denominators (e.g., percents with a denominator 

of “100,” and rates with a common basis). Fractions having identical 
denominators are added by adding their numerators just like whole 
numbers for the same denominator (the same unit fraction). So, ¼ + ¾ 
= 4/4 and 25% + 75% = 100%.
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• Those having commensurate denominators (e.g., ½ + ¼). Those having 
commensurate denominators can be easily scaled so they have a 
common denominator. For example, consider (a/b) + (c/d) where d = 
k*b so b = d/k. Thus, (a/b) + (c/d) = [(ak)/d)] + (c/d) = [(ak)+c]/d. If 
we want to add a quarter and a half dollar, we exchange the half dollar 
for two quarters (divide the half dollar by ¼ to get two-fourths) and add 
the two quarters with the one quarter to get the total of three quarters. In 
shifting from dollars to quarters, it seems that students have difficulty 
seeing that multiplying the dollars by four is the same as dividing the 
dollars by ¼. 

• Those having incommensurate denominators (e.g., 1/4 + 1/5). One can 
express the addition of incommensurate fractions as a result of a double 
scaling. Consider (a/b) + (c/d). If b and d are incommensurate, then a 
simple scaling is to use their product. Scale (a/b) by multiplying and 
dividing by d; scale (c/d) by multiplying and dividing by b. This gives, 
(ad)/(bd) + (cb)/(bd) which gives the well-known result (ad+bc)/bd. 

4. Introduce arithmetic operations using percentages and rates in context. 
Mathematicians create mathematical objects by omitting context. Quantitative 
literacy focuses on mathematical objects in context where the context makes 
a mathematical difference. Thus, ratios, fractions and percents encountered at 
school are typically mathematical objects. But the fractions, ratios, percentages 
and rates encountered in everyday usage typically appear in context. Eight-
tenths or 80% is a mathematical object. “The percentage of U.S. toys that are 
made in China is 80%” is a percentage: a fraction in context where the numbers 
refer to things in reality. Likewise, a ratio of two dimensionless numbers is a 
mathematical object. A ratio in context (e.g., 30 miles per U.S. gallon or 12.8 
kilometers per liter) is a ratio in context. As a mathematical object, a rate is 
simply a ratio. But the term ‘rate’ in context can mean a rate per unit time (the 
number of births per year), a prevalence (the unemployment rate among U.S. 
blacks 18-24 in the civilian labor force who are not in college was 18.3% in 
2005) (U.S. Census Bureau, 2007, Table 581) or an incidence (the death rate 
is 817 per 100,000 U.S. population in 2004 (U.S. Census Bureau, 2007, Table 
109)).

Any two real numbers can be added, subtracted, multiplied or divided. But 
the results are not always meaningful or appropriate for numbers in context.

Once students have identified that a percentage or rate involving counts of 
real things that can be identified by their membership in a group (e.g., men or 
women), then students can determine whether two percentages or rates have 
common or distinct parts. If they have distinct parts within a common whole, 
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then their sum can be meaningful—provided these parts are exclusive. But if 
they have common parts involving two distinct wholes, then adding them may 
be meaningless. As an example, consider this problem. Suppose a company 
has a 60% market-share in the eastern U.S. and a 70% market-share in the 
Western US. What is their market-share in the entire US? It cannot be 130%. 
Here is a case where the addition of fractions (6/10 + 7/10 = 13/10) is correct 
but meaningless. Students need to be taught when a sum of fractions in context 
is meaningful and when it is not.

Fractions in context have different forms and the context determines what 
can and cannot be done operationally. The operations that can be done or not 
done are not always consistent from context to context. This makes it impera-
tive that educators help students interpret fractions in context in a sense-mak-
ing way rather than in an abstract algorithmic way.

5. Be aware of objections to increasing the focus on percentages and rates 
in context. It is all too easy to say that just because we may not do something 
in everyday life, that we should not have to learn it. Students used to learn 
how to take a square root, but now calculators do that for us. Does this mean 
students should not have to learn how to divide or multiply or subtract or add 
since calculators can do this for us? Absolutely not! Calculators do not tell 
us how to enter the information. Calculators do not provide an estimate of 
the answer so we can see that we made a mistake in entering the problem. 
Calculators may not help us develop a conceptual understanding that is crucial 
to becoming educated.

Wu (2002) claims that “fractions hold the potential for being the best kind 
of ‘pre-algebra.” He noted that, “the subject of fraction arithmetic—usually 
addressed in grades 5 and 6—is rife with opportunities for getting students 
comfortable with the abstraction and generality expressed through symbolic 
notation.” He illustrated this in adding two fractions, (a/b) + (c/d) = (ad+bc)/
(bd), and noted the truth of this equation holds regardless of whether the vari-
ables are whole numbers, fractions, finite decimals or polynomials [assuming 
non-zero denominators]. The same holds true when multiplying two fractions: 
(a/b)(c/d) = (ac)/(bd). For Wu, “there is no generality or abstraction without 
symbolic notation.” 

6. Identify advantages to other mathematical topics that might be 
introduced to help students develop their conceptual powers instead of 
common fractions. Taking Wu’s claims as true, one can still ask if tables, 
graphs and ordinary English statements are a form of symbolic notation. One 
can ask if there are other mathematical ideas that could introduce students to 
abstraction and symbolic notation. Ratios (including simple percentages and 
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rates), linear models (y = a + bx), weighted averages (z = [x*weight of x] + 
[y*weight of y]) and scaling and proportional reasoning (a/b = c/d) can all 
be demonstrated using symbolic notation and are encountered more often in 
everyday life than adding common fractions. 

Abstraction and generality are important in developing one’s conceptual 
powers. Learning that the unit of measurement is a human choice is an impor-
tant step in cognitive development. Are there ways to use fractions that are a 
more natural fit with the way people talk in everyday life? 

Instead of using common fractions to introduce symbolic notation and the 
idea of scaling, one alternate might be to use everyday rates. Everyday rates 
are not mathematical rates: the slope of a line (y/x or dy/dx). Such a slope may 
be described as a ‘grade’ measured in percent. 

Everyday rates are ratios of two related counts. They may be incidences 
per unit time such as birth rates and death rates, or prevalences at a moment 
in time such as the unemployment rate. Whereas percentages are all ‘per 100,’ 
these everyday rates specify the unit of measure. At first changing the scale 
seems no different with rates than with the everyday units of time. In the U.S., 
the birth rate in 2003 was 14 per 1,000 people (U.S. Statistical Abstract (2007, 
Table 76). Thus it is 140 per 10,000 people and 1,400 per 100,000 people. 

But with real-world rates, the numerator and denominator are not neces-
sarily two independent quantities: they are often linked. Men cannot give birth 
so the birth rate in the U.S. is 29 per 1,000 women—since women made up 
51% of the population and 14/0.51 is 29. Women younger than 15 or older 
than 44 seldom give birth so the birth rate in the U.S. is 66 per 1,000 women 
aged 15–44—since 44% of all women are ages 15–44 and 29/0.44 is 66. (U.S. 
Statistical Abstract, 2007, Table 78). In these cases, the numerator in reality 
remains unchanged (U.S. births in 2003) and is independent of the size of the 
denominator (adults, women or women ages 15–44). 

The linkage between numerator and denominator depends critically on the 
context. In a percentage, the numerator (the class counted) is always a subset of 
the denominator so changing the size or the group can change the numerator. 
The same is true for many rates. Thus, the accident rate per 100,000 licensed 
drivers is generally not the same as the accident rate per 100,000 cars or the 
accident rate per 100,000 bars. Recall the birth rates mentioned above. Women 
ages 18–19 are less than 10% of women age 15–44, but the birth rate for the 
younger group, 71 per 1,000 among women 18–19, is not ten times as high. 
Obviously the numerator—number of births among this age group—is less 
than the number of births among those women age 15–44. Using rates where 
the numerator and denominator are linked because of the context introduces a 
new factor that is not obvious in dealing with a common fraction a/b. 
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As another example, compare the accidental death rates between Arkansas 
and Hawaii in 1996. Arkansas has a higher accidental death rate than Hawaii 
(36 vs. 18) per 100,000 registered vehicles. But Hawaii has a higher accidental 
death rate than Arkansas (35 vs. 7) per 1,000 miles of road (U.S. Statistical 
Abstract, 1998, Tables 143, 1019 and 1029). Once again students see that 
the choice of the unit of measure not only changes the size of a statistic—it 
can influence the direction of an association. If students are to be statistical-
ly literate, they must understand that the numerator and denominator can be 
linked by the choice of the denominator—not just by the size of the unit in the 
denominator. 

Scaling is mathematical. But if students are to be quantitatively literate, 
they need to learn that the choice of the group—the basis of a comparison—
can strongly influence the size of a number or a statistic. Teaching fractions as 
having an independent numerator and denominator overlooks this dependency 
on context: a material element that is critical in the real world—and in the 
conditional probability of statistics.

It may be helpful for mathematical educators to use this focus on context 
to categorize the transformation of ratios. Consider three groups: numerator is 
directly proportional to denominator (shifting a rate from per 100 to per 1,000: 
mathematical scaling), numerator is independent of the denominator (shifting 
the birth rate from all people to just women), and the numerator is related to 
or dependent on the denominator but not directly proportional (shifting the ac-
cident rate denominator from registered vehicles to miles of road). By focusing 
just on the first group, students may have been denied access to more complex 
applications of mathematics that are relevant in everyday life. 

Weighted averages provide another way to introduce abstraction. One 
wonders why the weighted average of counts in separate group, [(a/b), (c/d)], is 
not included as (a+c)/(b+d) since the weighted average is a real and valuable 
concept in everyday life. For example, if there are 30 smokers among 90 men 
and 5 smokers among 10 women, then there are a total of 35 smokers among 
these 100 individuals: 35% of these people are smokers. Note that the 35% is 
the average of the 33% among men and the 50% among women weighted for 
the mixture of men (90%) and women (10%): 0.9*33% + 0.1*50% = 35%. 

In quantitative literacy, context counts. Even if ratios in context were infe-
rior to mathematical objects such as common fractions in terms of introducing 
students to symbolic notation and abstraction, the benefits from a heightened 
focus on context along with improved teacher understanding and persuasive-
ness, from improved parental involvement and from increased student aware-
ness of their benefits might more than compensate for their formal weaknesses 
having less emphasis on symbolic notation. 
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7. Identify places in the curriculum to introduce or embed the study of 
fractions in context. Eliminating the abstract algebra-like manipulation of 
common fractions in elementary schools may be overly drastic at this time. 
Consider three alternatives.  The first is for all students taking mathematics in 
middle school.  The last two are alternatives to algebra II for those students not 
planning on attending college or who are planning on non-quantitative majors 
in college—majors such as English, elementary education, history, political 
science, communications, journalism, music, art or philosophy.

•	 Introduce rates and percentages as presented in tables and graphs in 
middle school as a pre-algebra bridging course: a supplement to—or 
an application of—fractions. 

•	 Introduce a Quantitative Literacy course as an alternative to algebra II.  
According to Gillman (2006), “there is consensus that the mathematical 
skills necessary to be quantitatively literate include elementary logic, 
the basic mathematics of financial interest, descriptive statistics, finite 
probability, an elementary understanding of change, the ability to 
model problems with linear and exponential models, estimations and 
approximation, and general problem solving.” For more on such a 
course, see Gillman (2006) and Madison (2006). 

•	 Introduce a Statistical Literacy course—evaluating statistical associa-
tions as evidence for causal connections—as an alternative to Algebra II.  
In addition to teaching students about rates, percentages, comparisons 
and standardization as devices for taking into account the influence 
of context, Statistical literacy could include a stronger focus on the 
influence of chance and include the influence of social construction 
—the choices made in defining groups or measures, in combining 
subgroups and in presenting statistical results in graphs, tables and in 
words.  See Best (2001, 2002, 2004 and 2007) and Schield (2007a).  
For an overview of a Statistical Literacy course, see Schield (2004a, 
2007b) and Isaacson (2005).  This statistical literacy course could serve 
as a bridging course for those students wanting to take AP Statistics in 
high school.

8. Identify and teach topics that college students in non-quantitative majors 
need to master at the school level and which are currently not being taught 
there. Mastering percentages, rates and weighted averages allows students to 
take on more subtle mathematical and statistical topics that are commonly 
found in the everyday media, such as: 

•	 Simpson’s paradox: Suppose that a city hospital has a higher death 
rate among patients than does a rural hospital. But when patients are 
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classified as being in either good or fair condition, patients in each 
condition have a lower death rate at the city than at the rural hospital 
(Schield 2006b). 

•	 Standardization: Standardization takes into account the influence of a 
confounder using algebra or a graphical technique. Given the average 
family income for white and black families by type of family (single 
parent vs. married couple) and given the percentage of married couple 
families in each race, what percentage of the U.S. black-white family 
income gap is explained by differences in family structure? (Schield 
2006b). 

•	 Cases attributable: In the U.S. in 2003, the poverty rate was 25% in 
single-parent homes (5% in married-family homes). There are 4.5 
million single-parent homes. How many of the single-parent families in 
poverty are attributable to their being a single-parent family? (Schield 
2004b). 

•	 Bayes comparison: Men are 94% of those in prison but 49% of the U.S. 
population so men are almost twice as prevalent among those in prison 
as among those in the general population. Using Bayes rule, we can 
conclude that men are almost twice as likely to go to prison as are those 
in the general population (Schield 2004b). 

Conclusion
In preparing students for four-year colleges, school mathematics educators 
must justify their choice of topics and pedagogy for the 40% of college stu-
dents who will graduate in non-quantitative majors. Satisfying the needs of this 
group is critical. These students are more likely to become journalists, policy 
advocates, lawyers, opinion makers and political leaders, thereby influencing 
local and national policies. College students in non-quantitative majors need 
quantitative literacy—even if they cannot (and need not) solve a quadratic 
equation or factor a cubic expression. 

Whenever possible, school mathematics educators should look for ways to 
use context (the quantitative elements of everyday life) to drive the choice of 
quantitative topics rather than selecting mathematical topics and then looking 
for contexts in which it is used. Mathematics educators should focus more on 
those mathematical topics that are encountered most often in everyday con-
texts and that teachers in all majors can understand and will expect of their stu-
dents. “Mathematics in context” should focus less on going from mathematics 
to context and focus more on going from context to mathematics. 
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In short, describing, comparing and standardizing percentages, rates and 
averages in context—in graphs, in tables and in ordinary English statements—
should be an important element in the “mathematics in context” curriculum for 
both primary and secondary school students. 
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Preparing Students for the Business of the 
Real (and Highly Quantitative) World

Corrine Taylor*

Wellesley College

Could the half trillion dollar aggregate cost of the telecommunications crash 
of the 1990s and early 2000s have been mitigated had our nation’s schools and 
colleges emphasized quantitative reasoning (applied math, logic, and statis-
tics in context within a culture of spelling out and questioning assumptions) 
rather than “school mathematics” divorced from the real world?1 Likely so. 
John Handley, telecommunications consultant and author of Telebomb: The 
Truth Behind the $500-Billion Telecom Bust and What the Industry Must Do 
to Recover describes myriad problems that precipitated the telecom crisis, be-
ginning with false assumptions and faulty quantitative reasoning that resulted 
in tremendous overinvestment in communications networks. Explaining the 
“fundamental fallacy” Handley writes:

To attract investors, new entrants [in the race to cover the US in fiber-
optic cable] depended on a catch phrase that passed for fact at the 
time but has since been debunked. Beginning in 1997, various parties 
interested in seeing the Internet grow began repeatedly to drop the 
sound bite that “Internet traffic doubles every ninety days.” Although 
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this was probably true during the early commercialization of the 
Internet in 1995 and 1996, it should have been obvious that growth on 
that scale could not be sustained. It is much easier to grow at a given 
percentage from a smaller base. It is easier to grow revenue from 
$100 to $200 than it is to grow from $100,000,000 to $200,000,000, 
for example. An additional $100 is easier to find than $100,000,000.2

Handley goes on to say that “the sound bite persisted at a time when 
most entrepreneurs were moving too fast in the Internet land grab to spend 
time thinking for themselves”3 (emphasis mine). In today’s highly quantitative 
world, we need citizens who can think critically about such issues. This paper 
asks: How can we best prepare today’s students who may be the entrepreneurs 
of the future—whether on the scale of investing millions in telecommunica-
tions or, more likely, investing in their own small businesses—with the quan-
titative skills and habits of mind to routinely question such assumptions and 
“do the math”? How can high school and college curricula offer more authen-
tic opportunities for students to apply quantitative reasoning (QR) in business 
and personal finance arenas that they will likely encounter upon graduation? 
And how can we provide better training for teachers so that they can guide 
students in combining the important business (and general critical thinking) 
skills of seeking out information, analyzing that information, making deci-
sions, and communicating findings? Moreover, how do we create a society 
of people who routinely think for themselves and not follow the mob even 
when—especially when—the real world problems at hand are quantitative in 
nature? 

What skills matter most?
Quantitative reasoning skills are required of today’s citizens in so many aspects 
of everyday life, as is emphasized in Mathematics and Democracy: The Case 
for Quantitative Literacy.4 This paper focuses on one specific area: business. 
What kinds of QR skills are most important in the business world? To answer 
this question we draw from multiple sources. First, we examine the mathemat-
ics content areas and QR skills emphasized on the aptitude test generally re-
quired of candidates for masters’ of business administration (MBA) programs. 
Second, we explore other QR skills and learning approaches that business 
schools value at both the undergraduate and graduate school levels. Third, we 
examine the skills that business consulting firms screen for when interviewing 
job applicants. Next we consider the quantitative business skills required in 
planning, launching, managing, and closing a small business. Assisting with 
the explorations above are the insights of experts from business schools, con-
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sulting firms, and the Small Business Administration. We also gain insights 
from some leaders in the QR movement and from my own experiences as a 
strategic planning analyst and as a college instructor for economics and QR.

Lessons from the GMAT, business schools, and the CLA
The GMAT (Graduate Management Admission Test) is the test used by more 
than 1,500 business schools world-wide to assess the potential of applicants to 
MBA programs.5 This aptitude test has three main sections: the analytical writ-
ing section, the verbal section, and the quantitative section.6 The assessment’s 
emphasis on communication skills—particularly the importance of writing 
clearly about analytical topics—is noteworthy. The quantitative section uses 
two types of multiple-choice questions: (1) “problem solving questions” that 
are designed to test basic mathematics skills, the understanding of basic con-
cepts, and the ability to reason and solve quantitative problems; and (2) “data 
sufficiency questions” that require one to examine a question and two state-
ments that contain additional information and determine whether there is suf-
ficient information to answer the question posed.7 While the multiple choice 
format of the quantitative section is understandably disappointing to advocates 
of open-ended, authentic QR problems (and yet is the norm for standardized 
tests),8 it is the mathematics content areas, not the format, of this test section 
that is of most interest in understanding what is required of business school ap-
plicants. Also of interest are the combinations of skills required in addressing 
these questions.

Calculus is not a content area tested on this assessment; rather the GMAT’s 
quantitative section assesses one’s core skills in arithmetic, algebra, and basic 
geometry. Most questions deal with the commonly applied skills of using ba-
sic arithmetic operations; dealing with fractions, percents, and ratios; reading 
and interpreting graphs; measuring and comparing values, often with different 
units; and working with models of linear and exponential growth. The data 
sufficiency questions test one’s ability to reason in addition to being able to 
apply the mathematics content areas above. These emphases make sense given 
the most common applications in the major business disciplines of account-
ing, finance, marketing, and management. Indeed, Richard Cleary, Professor 
of Mathematical Sciences at Bentley College, reports that while calculus is 
important in a few specialized areas such as risk management, actuarial sci-
ence, and high-end finance, and is helpful in solving economic problems of 
constrained optimization, the great majority of business problems do not in-
volve calculus or other high-level mathematics; rather, most business problems 
utilize the mathematics content areas tested on the GMAT as well as statistics.9 
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These are precisely the areas that QR proponents argue should be emphasized 
more in context at both the high school and college level if we are to create a 
quantitatively literate society able to handle the business of the real world.10

Beyond knowing how to apply mathematics to solve problems in context, 
Cleary (along with every other business or economics professor I know) ranks 
the ability to “guess and check” as a key QR skill, especially given the common 
use of technology. That is, before beginning quantitative business problem—
even a narrowly defined calculation problem—one ought to have an idea of the 
right order of magnitude of the solution; if one cannot even make a guess, then 
how clearly can one understand the problem? And on the other side, once a 
solution is determined to a problem, one ought to be able to check that it is of a 
reasonable value.11 We all know stories of students who have used a calculator 
to perform a computation, made some error in pushing buttons, and proceeded 
to report an answer that was clearly unreasonable – way off in order of magni-
tude. Teachers worried that “calculator dependency” kept students from actual 
thinking. Now, with bigger, more complex business problems (problems that 
still use core skills, but often with large numbers of observations or repeated 
steps for many years of analysis), students routinely use computers as tools 
in their problem solving, creating a concern over “computer dependency.” As 
Cleary says, “It’s easy to use a very powerful computer to get a very wrong 
answer.”12 While business students need to know how to perform calculations 
and complex analyses on computers, more than ever, they need to apply core 
quantitative skills to estimate and check for the reasonableness of answers.

Many other quantitative reasoning skills are needed to address authentic 
business problems that are, by nature, complex. Real world problems require 
devising an overarching plan for addressing the problem, finding information, 
assessing the quality of the information, making reasonable assumptions where 
information is not readily available, determining the best analytical approach, 
using technology when needed to perform the appropriate analyses, checking 
the reasonableness of calculated values, interpreting the meaning of calculated 
values, evaluating the decisions that those values lead to, and communicating 
the findings clearly, both orally and in writing. Business applications naturally 
integrate these many critical thinking skills that are too often taught in isola-
tion in most K–12 schools and even in colleges. Unfortunately, in mathematics 
courses, students are rarely asked to find data or make assumptions; textbook 
problems typically provide all the required information and one simply needs 
to use the technique du jour to combine the information given in order to pro-
duce the desired result. (Today is Tuesday, linear growth day, so I must be able 
to fit this problem into the formula y = mx + b.) Also, because mathematics 
courses tend to focus on the techniques used in making calculations, students 
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are rarely asked to communicate their finding using complete sentences. At the 
same time, writing courses typically focus on literary analysis or on other top-
ics in the humanities; most high school students (and even college students) get 
very little practice writing about quantitative topics outside of crafting science 
laboratory reports.

High schools and colleges would likely benefit from adopting the integrat-
ed learning approaches used by undergraduate business programs and graduate 
schools of business in honing students’ quantitative skills and, more generally, 
their critical thinking skills. In particular, the case method, used extensively in 
business programs around the world, is an effective approach.13 A case presents 
a “detailed account of a real-life business situation, describing the dilemma of 
the ‘protagonist’—a real person with a real job who is confronted with a real 
problem.”14 Students are presented the situation “exactly as the protagonist 
saw it, including ambiguous evidence, shifting variables, imperfect knowl-
edge, no obvious right answers, and a ticking clock that impatiently demands 
action.”15 In the case method, students are not merely charged with making a 
calculation; rather, they must make a decision: What should the protagonist 
do? With this approach, students cannot help but be motivated and engaged. 
Case studies are so much more interesting and relevant than the typical arti-
ficial little questions in most mathematics text books. At the same time they 
challenge students to apply what Benjamin Bloom calls “higher order think-
ing” skills, going beyond questions requiring knowledge, comprehension, and 
application, to those involving analysis, synthesis, and evaluation.16 Because 
case studies require students to evaluate quantitative evidence, determine rea-
sonable analytical approaches, perform complex calculations, make decisions, 
and communicate not only the results but also the process, they provide the 
opportunity for students to sharpen all their QR skills.

A relatively new assessment system (piloted in 2002) takes just such a 
holistic approach, using open-ended “performance tasks,” among other in-
struments, to measure improvements in college students’ critical thinking, 
analytical reasoning, problem solving, and writing.17 The Collegiate Learning 
Assessment (CLA), developed by the Council for Aid to Education in con-
junction with the RAND Corporation, provides formative assessments of the 
value-added at colleges and universities by testing a sample of each participat-
ing institution’s first year students in the fall and seniors in the spring. The 
performance tasks completed by the students are authentic activities “such as 
preparing a memo or policy recommendation by using a series of documents 
that must be reviewed and evaluated” allowing the students to demonstrate 
their “ability to interpret, analyze, and synthesize information.” The CLA tasks 
I have seen are excellent; I hope that these types of open-ended, holistic prob-
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lems are used more often to assess QR skills in business and in other disci-
plines as well.

Lessons from consulting firms
Firms that help businesses of varying sizes grow and prosper by providing 
management and/or technology consulting hire both individuals with higher 
degrees such as MBAs and graduates straight out of college. College gradu-
ates may have bachelors’ degrees in arts or sciences but need to exhibit strong 
critical thinking, analytical, writing, and oral communication skills, says Beth 
Reiland, Chief Personnel Officer for the Exeter Group.18 Reiland argues that 
the kinds of core skills tested on the GMAT quantitative section are the nec-
essary building blocks of problem-solving, but emphasizes that having these 
analytical skills is not sufficient. Workplaces need individuals who can com-
municate effectively with each other about quantitative issues. “In the business 
consulting environment, we come up with better solutions using collabora-
tive thinking processes,” Reiland explains. “Solutions to complex problems 
are improved by working in cooperative groups: sharing assumptions and in-
formation, thinking aloud about approaches, and testing ideas with others.” 
Therefore, Reiland continues, educators need to “devote energies to develop-
ing a clear language for communicating about quantitative topics.”19 

The importance of being able to communicate effectively about quanti-
tative topics is reflected in the personal interview process used by consult-
ing firms today. In the old days, interviews were essentially chats about one’s 
education and interests; today they are challenging tests of the applicant’s 
analytical and communications skills. In How Would You Move Mount Fuji? 
Microsoft’s Cult of the Puzzle: How the World’s Smartest Companies Select the 
Most Creative Thinkers, author William Poundstone describes how loosely-
defined questions and Fermi puzzles are being used in interviews of not only 
technology firms such as Microsoft, but also Fortune 500 companies, “law 
firms, banks, consulting firms, and the insurance industry; airlines, media, ad-
vertising, and even the armed forces.”20 Below are a few examples of these 
puzzles from Poundstone’s book:

• How many gas stations are there in the United States?
• How long would it take to move Mount Fuji?
• Suppose you’re hired as an IRS agent. Your first job is to find out 

whether a nanny agency is cheating on its taxes. How would you do 
it?21

Depending on the situation, the interviewer may expect the interviewee 
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to be able to solve the problem without additional information, or he or she 
may be willing to provide more information when asked for specific details. 
For many of these puzzles the emphasis is on making reasonable assumptions, 
coming up with an approach for solving the problem, and applying QR skills 
to come up with what my boss used to call a “back-of-the-envelope” solu-
tion. Calculators are verboten. Typically the interviewer explains that he or she 
would like a “running monologue” (if not a dialogue) to show the interviewee’s 
thought process.22 The interviewer assesses not only the interviewee’s over-
arching approach, logic, and mathematics skills, but also his or her exposi-
tion. Consulting firms do not want to hire mathematics geniuses who can solve 
problems on paper but cannot talk about the approaches and solutions with 
others. They want individuals who can communicate with others on a team 
about assumptions, techniques, results, and decisions. 

In addition to, or instead of, presenting loosely-defined puzzles, many 
management consulting firms present interviewees with short cases similar to 
those used in MBA programs. The interviewer presents the basic challenge 
faced by the protagonist, along with selected evidence. Interviewees need to 
process the relevant information and ask specific questions to obtain additional 
data that they think would be relevant to the problem at hand. Case studies are 
definitely dialogues. McKinsey & Company, a premier global management 
consulting firm, tells applicants: “During the case study we look for evidence 
of your ability on a number of different dimensions – logical reasoning, cre-
ativity, quantitative skills, business judgment (not business knowledge), prag-
matism, and an ability to structure problem solving.”23 Again, in showcasing 
these abilities, the interviewee needs not only the logic and mathematics skills 
but also strong communication skills about quantitative topics. 

Lessons from small businesses
While graduates of top MBA programs and employees of management con-
sulting firms are known for working with Fortune 500 firms and other large 
and medium-sized corporations, 98% of businesses are categorized as “small 
businesses” with fewer than 100 employees and 99.7% are businesses with 
fewer than 500 employees.24 These firms include “mom and pop” convenience 
stores, greengrocers, florists, drycleaners, small retail shops, restaurants, 
neighborhood fitness centers, landscapers, professionals such as dentists, law-
yers, and accountants who “hang out their shingles,” Web site development 
companies and other small providers of computer services, small manufactur-
ing and construction companies, and many, many other types of businesses. 
The Small Business Administration (SBA), the US governmental agency that 
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assists small businesses, provides resources including a Web-based planner to 
help small business owners plan, start, and manage a business, and when the 
time comes, sell the business.25 The “Small Business Planner” provides infor-
mation and resources on each of the following topics:26

Plan your 
business Start your business Manage your business Getting out

Get ready Find a mentor Lead Plan your exit
Write a 
business 
plan

Finance start-up Make decisions Sell your business
Buy a business Manage employees Transfer ownership
Buy a franchise Market and price Liquidate assets
Name your business Market and sell File bankruptcy
Choose a structure Understand fair practices Close officially
Protect your ideas Pay taxes
Get licenses, permits Get insurance
Pick a location Handle legal concerns
Lease equipment Forecast

Advocate, stay informed
Use technology
Finance growth

Examining these business decisions, we note that about half of them are 
quantitative in nature. More detailed questions for these topics would include: 
What combination of drawing from savings and taking out loans makes the 
most sense in financing my start-up? Should I buy or lease my equipment? If I 
take out a start-up loan or if I lease equipment, which of the various timelines 
offered is best for my particular circumstances? How much insurance do I 
need to get and from whom will I get the best coverage for the price? What 
prices should I charge for my products and services to cover my costs, provide 
a suitable rate of return, and remain competitive in the marketplace? What do I 
predict sales will be one year from now? In considering the mathematics skills 
required in addressing these types of questions, we note again that calculus is 
not essential; rather, arithmetic, algebra, and statistics are the core mathematics 
content areas.

Of course, the real trick is not simply being able to solve an algebraic 
equation, but being able to translate the language of the real world business 
question into the relevant mathematics problem, finding the information need-
ed to answer that problem, and understanding what the mathematical solution 
implies for the best decision. Small business owners need to be able to com-
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municate with bankers, lawyers, tax consultants, their suppliers, their custom-
ers, their employees, and others about these many quantitative issues. Robert 
Berney, retired chief economist for the SBA, stresses that the K–12 founda-
tions of clear communications in English (reading and writing) are every bit as 
essential as basic mathematics (arithmetic) in preparing students for the world 
of business.27 Those famous “three Rs” are still the key to a solid base of criti-
cal thinking skills.

Lessons from QR teachers
William Briggs, co-author of Using and Understanding Mathematics: A 
Quantitative Reasoning Approach and Professor of Mathematics at the 
University of Colorado–Denver, gives an example of a very short, basic busi-
ness problem he assigns his QR students. The problem is taken directly from a 
newspaper article: The CEO of a struggling airline plans to take an 85% salary 
cut. The cut would reduce his salary to $500,000 per year. What was his salary 
before the cut?28 Of course, the problem is a simple algebra problem at its core, 
but the algebra itself is not the hard part for most students. Once the problem 
is in the form x – 0.85x = $500,000, students find it pretty easy to solve for 
x. The real challenge for Brigg’s college students is in translating the words 
into the algebraic expression. Students need more opportunities to work with 
practical word problems and they need practice developing the critical think-
ing strategies to do that translation from words into formulas. Briggs helps 
his college students develop these skills, having them first draw a picture then 
write a sentence such as “old salary minus 85% of old salary equals new salary 
of $500,000.” These strategies need to be emphasized more when students first 
learn algebra.

Bernard Madison, Mathematics Professor at the University of Arkansas 
and first president of the National Numeracy Network, similarly notes that real 
world quantitative problems are “entangled in contexts that are often confusing, 
inexplicit, and incomplete. Once we untangle and clarify the quantitative con-
tent [within] these contexts, the mathematics or statistics may be elementary, 
but the contexts and reflection of our results back into the contexts are often so-
phisticated and complex.”29 To give his students practice working with quanti-
tative analyses in authentic contexts, Madison has developed over a dozen case-
like applications based on newspaper and magazine articles.30 In my classes, 
too, students analyze data from various sources and claims in the media. I 
challenge my students to question headlines with astounding numbers. Exactly 
how was that value calculated? Is it reasonable? These applications of quanti-
tative reasoning ripped from the headlines keep the students from being able 
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to ask the dreaded question “When will I ever use this math?” Students see the 
relevance immediately and are actively engaged in the application of the logic, 
mathematics, and statistics. Presumably, such motivated students will learn the 
material, retain it, and be able to apply what they learned in other situations. 

Summary of core QR skills needed in business
So what skills matter most in business? In terms of mathematics content ar-
eas, while calculus is undoubtedly important for high finance and some other 
specialty fields, the core areas of arithmetic, algebra, mathematical modeling 
(especially linear versus exponential growth), logic, and basic statistics are 
most often applied in the business world. Students need to work extensively 
with percents and ratios in real contexts. They need to develop a questioning 
mentality. They need to learn to estimate, to “guess and check” so they are 
not fooled by the black box of computer computations. It is practice with ap-
plications of the core mathematics skills that students need most. Learning to 
solve for x in an algebraic equation is a necessary but not sufficient condition 
for being able to solve a real world problem involving algebra. Students need 
practice with messy, loosely-defined problems in authentic contexts and need 
to tackle such problems from beginning to end. A complex, real-world problem 
requires formulating a multi-stepped plan for addressing the question, track-
ing down relevant information and making realistic assumptions, estimating 
the answer, performing required calculations (which often require the use of 
calculators or computers), evaluating the outcomes, and communicating the 
findings. Communications skills cannot be emphasized enough. Developing 
a language for communicating clearly about quantitative topics is essential. 
Skills in mathematics, logic, and statistics combined with the ability to ques-
tion assumptions, plan approaches, and communicate findings are critical in 
the business world and in our quantitative world at large.

How can we help teachers prepare students for QR and the 
business world?
The lessons above provide important implications for the revitalization of 
teacher training and the improvement of curricula for students in K–12 schools 
and for undergraduate students in our nation’s colleges and universities. To 
help students develop and retain the kinds of quantitative skills that they will 
apply in the real world, especially in business, we need to move away from 
a fragmented teaching and learning approach to a more holistic one. In par-
ticular, we need to offer more opportunities for students to make decisions 
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that involve information-gathering and assessment, quantitative analyses, and 
communications about quantitative topics, not merely textbook calculations 
that use mathematics. Schools still need to teach English and mathematics, and 
separately at times, but then they also need to help students combine their re-
search, mathematics, logic, reading and writing skills in various contexts—be 
it in a physics, chemistry, or biology laboratory or in a history, social studies, or 
economics class. In short, schools must not only teach mathematics; they must 
also provide opportunities to practice quantitative reasoning. The differences 
between the two are characterized in Bernard Madison’s table below.31

Mathematics Quantitative Reasoning
Power in abstraction Real, authentic contexts
Power in generality Specific, particular applications
Some context dependency Heavy context dependency
Society independent Society dependent
Apolitical Political
Methods and algorithms Ad hoc methods
Well-defined problems Ill-defined problems
Approximation Estimation is critical
Heavily disciplinary Interdisciplinary
Problem solutions Problem descriptions
Few opportunities to practice
outside the classroom

Many practice opportunities
outside the classroom

Predictable Unpredictable

 What needs to happen for teachers to routinely provide such QR opportu-
nities for their students? First we need mathematics teachers to become well-
versed in authentic mathematics applications from a variety of disciplines. 
Such applications may come from the sciences, the social sciences, and even 
the arts. Personal finance and business applications may be particularly useful 
in applied mathematics courses. Additionally, mathematics teachers need to be-
come comfortable assigning and grading writings on quantitative topics. These 
assignments can start small: “Write a sentence that explains your results in 
context” or “Write a paragraph describing the graph you created.” Mathematics 
teachers also need to rely less on artificial text book problems and assign more 
loosely-defined problems such as Fermi puzzles and case studies—not full-
blown HBS cases but real world problems from newspapers, magazines, and 
journals. Responsibility for developing students’ QR skills cannot be placed 
in the hands of mathematics teachers alone, however. Teachers in quantitative 
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disciplines and in English classes need to jump on the QR bandwagon, as well. 
Social studies and science teachers, for example, might be challenged to as-
sign more papers requiring students to describe supporting tables and graphs. 
Writing teachers might move toward more assignments requiring the presenta-
tion of quantitative evidence. And teachers in quantitative disciplines need to 
be patient enough to remind students of the mathematics, logic, and statistics 
needed to be combined in new applications in their subject areas.

To help teachers stretch in these ways, teacher education programs and in-
service training programs need to provide more interdisciplinary opportunities. 
While training at the elementary school level tends to do this, secondary school 
training becomes much more discipline specific. The only way to get students 
to combine their information literacy, mathematics, and communications skills 
within various contexts is to train teachers to do the same. Teachers of math-
ematics and a variety of quantitative disciplines might benefit from courses 
in the case study method or project-based learning. These methods naturally 
require one to work in teams, enhancing problem-solving and communica-
tion skills. Workshops specifically designed to offer teachers examples of good 
interdisciplinary QR projects might also be offered to teachers. I taught such 
a week-long summer workshop last year to secondary school mathematics 
teachers in Virginia. Those workshop attendees expressed a strong desire for 
more curricular materials that they could easily use in their classrooms.

K–12 teachers have so many demands on their time that they do not al-
ways have the time to create interesting QR exercises from articles in last 
Sunday’s New York Times. If states become more explicit about student ex-
pectations in quantitative reasoning rather than in mathematics per se (on their 
standards of learning and standardized assessments, for example) then perhaps 
publishers will recognize the demand for more authentic QR exercises and 
will provide such resources for teachers. Such resources already exist at the 
elementary school level. For example, TERC, a non-profit education research 
and development organization dedicated to improving teaching and learning 
in math, science, and technology, offers the Investigations in Number, Data, 
and Space curricular materials. These “activity-based investigations encourage 
students to think creatively, develop their own problem-solving strategies, and 
work cooperatively. Students write, draw, and talk about math, as well as use 
manipulatives, calculators, and computers.”32 Similar multidisciplinary, activ-
ity-based materials need to be offered for secondary schools as well, where, as 
mentioned earlier, the tendency, unfortunately, is for schools to fragment the 
learning into distinct disciplines. 

In colleges, as well, collaborative efforts to develop students’ QR skills 
need to be encouraged. Team-teaching seminars or courses on quantitative, 
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interdisciplinary topics might be helpful. I recently had the pleasure of team-
teaching a new course in statistics in the biological sciences. I have not had 
biology since 9th grade but I know a good deal about teaching statistics and my 
co-teacher had never before taught statistics but is an expert in ecology and has 
done many statistical analyses in his biology research. Developing and teach-
ing this course was an excellent opportunity for each of us to expand our own 
QR skills in new directions and our enthusiasm apparently carried over to our 
students, who reported gaining a great deal from this class. I can envision many 
other collaborative efforts that would allow students additional opportunities to 
develop QR skills that will help them throughout life. To succeed in business, 
students need to develop those “habits of mind” of questioning quantitative 
evidence, analyzing problems, and communicating about quantitative topics. 
The applications need not come directly from the world of business; they can 
be from a biology or history course or the front page of the newspaper. 

Conclusion
To best prepare students for the highly quantitative real world of business, 
teachers need help in creating authentic, complex problems that integrate math, 
research, technology, and communication skills. Students need interesting and 
practical examples to make it abundantly clear that mathematics skills are ap-
plicable in the real world. Students need to be able to find information or make 
assumptions for “messy problems,” plan a reasonable approach to a problem, 
apply mathematical techniques, check for the reasonableness of the answer, 
and communicate the findings including decisions. Students need to develop a 
questioning mentality. 

Back to the Telebomb example, we would like to ensure that upon hear-
ing of the “half trillion dollar aggregate cost” of the telecommunications bust 
that people would immediately question where that figure came from. Over 
how many years was that cost accrued? Over what geographical space? Just 
the US or the world? Exactly what costs were included and why? This number 
sure sounds big—is it really? Relative to what? When our nation’s schools and 
colleges produce citizens who routinely question such headlines and ask those 
types of quantitative questions then we will have a population that is not only 
prepared for the business world but is prepared for the myriad quantitative is-
sues of everyday life.
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Beyond Calculation: Quantitative Literacy and 
Critical Thinking about Public Issues

Joel Best*
University of Delaware

Calls for quantitative literacy tend to focus on matters of calculation, on im-
proving students’ abilities to understand mathematical operations and to em-
ploy them in practical circumstances. In this paper I argue that quantitative 
literacy needs to move beyond calculation to understand the social processes 
that shape the creation and consumption of statistics about public issues. In 
particular, I examine the nature of the social construction of statistics and dis-
cuss how such considerations might be used in teaching quantitative literacy.

Not surprisingly, many of the calls for improving quantitative literacy tend 
to come from those who teach mathematics. This is important, because math-
ematics classes center on what I will call calculation.  I do not use this word 
as a mathematician might, in a narrow, technical sense; rather, I intend it to 
encompass all of the practices by which mathematical problems are framed 
and then solved. Thus, in my view, both someone adding up a column of fig-
ures and someone solving an abstract problem through a series of equations 
are engaged in forms of mathematical reasoning that I am calling calculation. 
People teach mathematics—and, for the most part, presume that they should 
teach it—as a series of increasingly complicated forms of calculation. Thus, 
mathematics instruction is a long march through ever more sophisticated tech-
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niques for framing and solving problems: that is, we first learn to count, then 
to add, etc., etc., until different individuals top out at algebra, trigonometry, 
calculus, or whatever. 

Because mathematics instruction is organized around principles of calcu-
lation, calls for quantitative literacy tend to assume that students are not suf-
ficiently adept as calculators, and that they need to improve their calculating 
skills, that they either need to beef up their abilities to carry out more sophis-
ticated calculations, or that they need to become better at recognizing how to 
apply their abstract calculation skills to real-world situations. I do not doubt 
that both sort of improvements are needed, but this paper argues that key forms 
of quantitative literacy require moving beyond calculation.

It will already be obvious that I am not a mathematician. I am a sociolo-
gist, interested in how and why particular social problems emerge as public 
issues—why is it that one year public concern focuses on, say, the health risks 
of breast implants, and then, a few years later, attention shifts to road rage or 
identity theft. I have written about the role that statistics play in this process, 
the ways that people use numbers to convince one another that this or that 
is a big problem (Best, 2001, 2004). Thinking critically about such statistics 
requires considering both the way those numbers are calculated and the pro-
cesses by which they are socially constructed. My goal in this paper is to argue 
that teaching quantitative literacy requires that we confront issues of construc-
tion, as well as calculation.

What Does It Mean to Say that Numbers Are Socially 
Constructed?
The term social construction attracted faddish attention in recent academic 
cultural wars; it was invoked as a justification for various relativistic, post-
modern positions taken by critical literary theorists, and denounced by those 
who saw themselves as defending objectivity and science (Boghossian, 2006; 
Hacking, 1999). Forget all that. The concept of social construction originated 
in sociology (Berger & Luckmann, 1966), and I will use the term in its nar-
rower, sociological sense.

Humans depend upon language to understand the world, and language is 
a social phenomenon. We learn language from other people, and that means 
that all of the meanings we ascribe to the world are understood through those 
people’s—their language’s—categories. In this sense, all knowledge is social-
ly constructed.

In particular, numbers are social constructions. Numbers do not exist in 
nature. Every number is a product of human activity: somebody had to do the 
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calculations that produced that figure. Somebody had to decide what to count, 
and how to go about counting. This is not a mundane observation, at least 
when we encounter numbers about public issues. Understanding those figures 
requires, not just that we comprehend the calculations that produced them, but 
also that we appreciate the process of social construction.  

Statistics and Public Issues
Let me begin with some examples of the sorts of numbers that regularly appear 
in discussions of public issues. When activists try to raise concern about some 
neglected social problem, when the media cover public issues, when political 
leaders propose new policies to address some concern—these are all occasions 
when statistics are likely to be invoked:

• Very often, when people seek to draw attention to some social problem, 
they offer numeric estimates for the extent of the phenomenon. Usually, 
these figures support claims that this is a big problem, one that demands 
attention (e.g., there are two million missing children each year; or one 
billion birds die annually in the U.S. from flying into windows). 

• Polling data is used to describe the public’s views about some social 
issue. Advocates often use such poll results to suggest that there is 
broad support for their causes (e.g., pro-life activists argue that most 
Americans are opposed to most abortions, whereas pro-choice advocates 
insist that the vast majority of Americans oppose ending legal abortion; 
similarly, both those favoring and opposed to adopting voucher systems 
for education point to surveys indicating that a majority of the public 
supports their position).

• Government agencies release statistical indicators (e.g., the crime rate, 
the unemployment rate, the poverty rate) that track conditions in the 
U.S. (e.g., in 2006, the U.S. Fish and Wildlife Service reported that 
total wetlands acreage increased between 1998 and 2004; earlier in 
2007, the Census Bureau announced that racial and ethnic minorities 
now account for one-third of the nation’s population).

• Rarely does a week go by without the news media summarizing some 
new medical research relating to the incidence of various medical 
problems (e.g., “1 in 5 Students Practice Self-Injury”) or lifestyle risks 
(e.g., eating particular foods, smoking, or drinking alcohol increases or 
decreases the risks of particular health problems).

Such statistics are intended, not just to inform people, but to shape their 
attitudes and behaviors. Claims that millions of people are affected by some 
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social problem can generate widespread concern: thus, claims in the 1980s 
that there were millions of missing children led to Congress passing new laws, 
many parents voluntarily having their children fingerprinted, and countless 
milk cartons displaying blurry pictures of missing kids. Arguments that most 
people hold particular opinions encourage other people to adopt those views. 
And stories about dramatic medical breakthroughs can inspire people to change 
their lifestyles (remember the oat-bran craze?).

However, many of these numbers can not bear close inspection. Particularly 
when people are first drawing attention to social problems, it is unlikely that 
anyone can do much more than guess about how many people—let alone 
birds—might be affected. The very fact that advocates on opposing sides of 
the abortion and school-voucher debates insist that most Americans sympa-
thize with their positions suggests that their statistics—or at least the impres-
sions they convey—must be flawed. And contradictory news reports that a 
particular food or beverage is bad—or is it good?—for one’s health provide 
fodder for stand-up comedians’ suggestions that scientists may not know what 
they are talking about.

Or take the recent fuss after the Centers for Disease Control and Prevention 
(CDC) declared that obesity killed 400,000 Americans in 2003, and warned 
that the obesity epidemic would soon surpass smoking as the leading cause of 
preventable deaths. This was followed, about a year later, by a report authored 
by a different set of CDC scientists that argued that 26,000 would be a more 
accurate figure for obesity deaths. The realization that public health experts, 
working at the same federal agency, could not agree on even a ballpark figure 
for obesity deaths generated a lot of head-scratching, head-shaking commen-
tary in newspaper editorials. 

Obviously, we live in a big, complicated world, and it is next to impos-
sible to understand what is going on in that world without resorting to numbers 
that promise quantitative measures—there are this many, it is increased by 
this much, and so on. We encounter such numbers every day. They help shape 
our sense of what is right and wrong with our world. These are not numbers 
that we calculate, rather, they are figures that we consume. They are calculated 
and circulated by others, who bring them to our attention in order to inform or 
influence our thinking. 

In my view, students need to learn to think critically about these numbers, 
and this requires more than having a sense of how those numbers were calcu-
lated. Students also need to understand these statistics as the results of social 
and political, as well as mathematical, processes. And this requires confronting 
matters of construction.
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The Rhetorical Uses of Social Statistics
To begin, we need to appreciate that many of the numbers used to portray 
social issues are invoked for rhetorical effect. There is a marketplace for so-
cial problems, one in which advocates for many different causes compete to 
first capture public attention, and then convince people to take action. This 
competition occurs in many arenas: a newspaper’s front page can only con-
tain so many stories; a congressional committee can hold a limited number of 
hearings; and so on (Hilgartner & Bosk, 1988). If one problem surges to the 
forefront of public attention, others will be shoved aside.

Surviving this competition requires using compelling rhetoric, claims that 
seem surprising, disturbing, or otherwise worthy of attention. Statistics be-
come one element in making persuasive claims. An arresting number can at-
tract attention. And this, in turn, encourages advocates to use figures that will 
make their causes seem compelling. They want statistics that can get an issue 
media coverage, that can arouse members of the public to join the cause, that 
can force politicians to take action.

This need not be a cynical process; the point is not that these advocates 
are lying. To be sure, there may be occasions when people deliberately fabri-
cate data, or when they intentionally use deceptive practices. But this sort of 
dishonesty probably cannot account for most—let alone all—of the dubious 
numbers presented about public issues. Advocates are often quite sincere: they 
believe they have identified what is in fact a big problem that has been shame-
fully neglected. It is therefore often easy for them to uncritically presume that 
their big number—which they may acknowledge is not much more than an 
educated guess—must be more-or-less accurate. But sincerity is no guarantee 
of accuracy. There have been heavily publicized numeric estimates for social 
problems that proved to be off by one, two, even three orders of magnitude. 

Similarly, because apparently minor differences in how survey questions 
are worded can lead to very different results, it is often possible for advocates 
on opposing sides of an issue to argue that public opinion supports their posi-
tion. Again, this need not be a cynical ploy, although when advocates report 
the results of polls they commissioned, their claims warrant especially careful 
examination. Still, people who hold strong views often spend a lot of time talk-
ing to others who share their concerns; it is easy for them to become convinced 
that—yes—most people agree with them.

Advocates become invested in their causes. This is by no means limited to 
having a financial interest in an issue’s outcome; they may also stand to gain or 
lose influence and social status, depending upon what happens. Often, too, they 
come to have an emotional stake in their claims. If an “obesity epidemic” poses 
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a serious threat to the nation’s health, then the CDC and other public health 
officials—to say nothing of pharmaceutical manufacturers and other firms that 
sell weight-loss products—stand to gain (Oliver 2006). We should not be too 
quick to assume that the competing estimates for obesity-related deaths emanat-
ing from CDC simply reflect different calculation choices; the agency’s leader-
ship has a considerable stake in maximizing concern about the obesity threat.

The media also compete in the social problems marketplace. Their prefer-
ence for important, dramatic stories means that they are drawn to claims that 
seem to present evidence for surprising conclusions (Two million children go 
missing each year! Research shows that eating oatmeal can cut your risk of 
heart disease!). Moreover, they are not under much obligation to check the 
numbers they report. So long as some researchers report that oat bran reduces 
health risks, a story about that research is accurate, regardless of whether oat 
bran actually has the beneficial effects claimed. Like advocates for competing 
causes, politicians, and even researchers, the media stand to benefit by promot-
ing the sorts of large, compelling numbers that they consider newsworthy.

Of course it helps that many of the advocates estimating the scope of so-
cial problems, like many of those in the media reporting on those estimates, 
have problems with innumeracy (Paulos, 1988). They may want to promote 
accurate numbers, they may even believe that their numbers are accurate, yet 
they also may have trouble assessing accuracy, so that—even with the best 
intentions—badly flawed numbers get into circulation. Many people seem to 
subscribe to the innumerate notion that all big numbers are essentially equal 
(“A million, a billion—hey, they’re all big numbers, what’s the difference?”). 
Further, there is a widespread tendency to equate numbers with facts. Once a 
figure has attracted public attention, people feel free to repeat it.  After all, a 
number suggests that somebody must have counted something—it must be true.

What about Authoritative Numbers?
It is, of course, easy to have doubts about statistics promoted by interested par-
ties. The tobacco industry’s critiques of research on the link between smoking 
and disease stand as a model of self-serving statistical hocus-pocus, and we 
can suspect that corporations generally will put forward numbers consistent 
with their interests. Similarly, we should anticipate that activists engaged in 
promoting various political and social causes will tend to use figures that ad-
vance their views. And there are many claims and counterclaims that this or 
that media outlet is “biased” and guilty of selective coverage. When I warn 
that statistics are socially constructed, these sorts of questionable sources for 
numbers may be the first thing that comes to mind.
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But social construction can shape statistics in many other ways. To repeat: 
we need to consider how processes of social construction shape all statistics. 
Even apparently authoritative, objective figures need to be approached with 
care. Consider two examples involving problematic statistics produced by au-
thoritative sources: the first a report summarizing the findings of an exhaus-
tive, technically sophisticated government survey, the other a research report 
published in a major medical journal.

On March 30, 2006, Secretary of the Interior Gale Norton released a Fish 
and Wildlife Service report showing “a net gain in America’s … wetlands for 
the first time since the Service began compiling data in 1954.” Secretary Norton 
was quoted as saying: “This report, prepared as part of President Bush’s initia-
tive to stem the loss of wetlands, is good news….  Although the overall state of 
our wetlands in still precarious, this report suggests that nationwide efforts to 
curb losses and restore wetlands habitats are on the right track” (“Secretaries 
Norton and Johanns,” 2006, p. 1).  This report quickly attracted criticism from 
conservationists, who pointed out that the apparent increase was due solely 
to the adoption of a new, more generous definition of wetlands, one that in-
cluded golf-course water hazards and other man-made water areas (Barringer, 
2006). (The report showed that acreage covered by swamps, marshes, and 
other natural wetlands had actually declined, and carefully noted that “This 
report does not assess the quality or condition of the nation’s wetlands” (Dahl, 
2006, p. 15).) 

This example raises at least three sorts of interpretative questions. The 
first involves matters of technical calculation (the application of sophisticated 
technologies such as aerial and satellite imagery, geospatial analysis, and com-
puterized mapping to measure areas defined as wetlands). The report discusses 
these methods in some detail. The second seems to straddle the boundary be-
tween calculation and construction: What should count as wetlands? Clearly, 
it is possible to disagree about the appropriate definition, as evidenced by the 
debate between the Administration and its environmentalist critics, although 
of Secretary Norton’s readiness to claim that total wetlands acreage had in-
creased, while ignoring the fact that the change was wholly due to redefining 
what counted, seems pretty shifty. Meanwhile, the third moves completely out-
side the domain of mathematical calculation: Why was the definition changed? 
Was the Bush Administration deliberately trying to use the broader definition 
of wetlands to conceal ongoing environmental degradation? Or is there some 
more innocent explanation? Understanding the change in wetlands acreage re-
quires thinking critically about more than matters of pure calculation.

Or take a second example, also from 2006, when an article published 
in the journal Pediatrics attracted a good deal of press coverage. CNN.com 
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(“Study: 1 in 5,” 2006), for instance, used the headline: “Study: 1 in 5 Students 
Practice Self-Injury.” Researchers (Whitlock, Eckenrode, & Silverman, 2006) 
invited 8,300 randomly selected students at two Ivy League universities to 
participate in an Internet-based survey; they received 2,875 usable responses (a 
34.6 percent response rate). Of the respondents, 490 (17%—rounded up to one 
in five in many news stories, although the percentage is, of course, closer to 
one in six) reported having practiced some sort self-injurious behavior (SIB). 
The most common SIB was “severely scratched or pinched with fingernails 
or objects to the point that bleeding occurred or marks remained on the skin” 
(Whitlock, Eckenrode, & Silverman, 2006, p. 1943).  Only 46 (i.e., 9.4 percent 
of those reporting SIB, which is to say 1.6 percent of the respondents) reported 
having inflicted an injury severe enough that it “should have been treated by a 
medical professional.” 

This study—and the resulting media coverage—offer a nice example 
of what happens when medical journals issue press releases (Shell, 1998). 
Journals presumably hope to raise their public standing by drawing attention to 
the important work published in their pages. Knowing that the press is unlikely 
to browse through each new issue without prompting, they issue news releases 
heralding newsworthy articles. This encourages accentuating the most striking 
aspects of the research (for instance, highlighting—even exaggerating—the 
substantial fraction of students practicing any sort of SIB, rather than drawing 
attention to the tiny percentage inflicting serious injuries). We might further 
suspect that an editor’s decision to publish or reject a paper might sometimes 
be affected by the work’s perceived potential for attracting media coverage. 
Once again, calculation is not at issue; however, interpreting the statistic pre-
sented in the media requires understanding something about the social process 
by which numbers find their way into our daily newspaper.

These examples remind us that government agencies, researchers, editors 
of scholarly journals, and other authorities have agendas, too. If obesity can 
be recognized as a huge public-health hazard, then the CDC can reasonably 
request more funding to deal with this problem. Even the most professional 
researchers would like to see their work appear in the best journals, and receive 
attention in the popular media. Such considerations can easily affect choices 
among ways of calculating and presenting data, so as to make the results seem 
as important or interesting—as competitive—as possible.

Implications for Teaching Quantitative Literacy
All of this has significant implications for teaching quantitative literacy. 
Evaluating the sorts of numbers—and the claims that such numeric evidence 
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is used to support—that appear in news reports about public issues requires 
a broader set of critical thinking skills than mastering calculation. It also re-
quires understanding something about the social construction of social statis-
tics—about competition among advocates for different public issues, about 
the rhetorical role statistics can play in supporting advocates’ claims, about the 
ways numbers are produced, about the assumptions and methods required to 
reach those numbers, about the limitations inherent in these processes, about 
the likely motivations and possible biases of the people who generate numbers, 
about ways the media make decisions to report or ignore numbers. That is, 
if quantitative literacy refers to a set of skills that can allow people to com-
fortably understand and critically examine the numbers they will encounter in 
their lives, including, in particular, figures that appear in discussions of public 
issues, then quantitative literacy instruction needs to extend beyond matters of 
calculation, to also encompass issues of construction.

The quantitative literacy movement seems to be composed largely of 
mathematicians and mathematics educators who have become skeptical about 
the practical value of traditional math instruction. They seem to view them-
selves—and are probably viewed by many mainstream mathematicians—as 
renegades who have ventured well outside the realm of what mathematicians 
recognize as mathematics. My point is that they have not gone far enough; that 
quantitative literacy requires some distinctly non-mathematical—that is, more 
than calculation-based—skills.

Because mathematics instruction emphases calculation, when it does in-
troduce critical thinking, it tends to do so in a half-hearted, limited fashion. For 
example, statistics courses may make brief, tangential references to the prob-
lem of “bias.” This is a convenient term, because it is ambiguous. On the one 
hand, statisticians use “bias” as part of the vocabulary of calculation: a sample 
drawn in some less than random manner is considered “biased”—what we 
might consider a technical, mathematical use of the term. But statistics teach-
ers also may warn their students that some people with, say, an ideological 
agenda—a “bias”—may deliberately choose samples, word survey questions, 
or use other techniques to insure the sorts of results they favor. Thus, having 
an ideological bias becomes simply another form of bias in the mathematical 
sense. While this does offer a way of fitting ideology (and other social factors) 
within a mathematical framework (in that both sorts of bias skew the results 
of calculations), it does not go very far in preparing students to think critically 
about numbers, beyond offering an vague injunction to watch out for sources 
of bias.

While I am ill-qualified to advise primary, middle-school, and secondary 
educators on how to teach, let me offer one example of the sorts of lessons that 
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might bring construction into the quantitative literacy classroom. When I teach 
social problems to lower-division college students, I give a couple people a 
brief homework assignment. One is to locate information from pro-life sources 
about surveys of Americans’ attitudes toward abortion; the other, of course, is 
to do the same thing using pro-choice sources. They invariably come to the 
next class armed with contradictory claims that most Americans support the 
position of their respective groups. This engenders a nice discussion about 
the ways pollsters measure abortion attitudes, about alternative ways different 
people can interpret the same data, and so on. 

I can imagine many similar ways to get students thinking critically about 
social statistics. The Census Bureau announces that nonwhite minorities now 
make up a third of the U.S. population. What does that mean? Does it matter 
that a substantial share of those being counted as minorities consider them-
selves white? What accounts for the bureau’s eagerness to reclassify people 
formerly considered white as minorities? A typical newspaper front page 
contains social, economic, or political statistics that offers similar fodder for 
quantitative literacy lessons that incorporate matters of both calculation and 
construction.

But Will It Work?
In short, I envision quantitative literacy as going beyond calculation. However, 
I realize that, even if others find my argument convincing, it is likely to prove 
very difficult to incorporate this goal in quantitative literacy programs, because 
the people who teach math—who are, after all, the folks most interested in 
quantitative literacy, and the ones who will doubtless wind up teaching this 
material—have been trained to teach calculation, and they tend to define the 
problem of quantitative literacy in terms of people being insufficiently adept at 
calculation. They are likely to see the sorts of issues I have raising as, at most, 
peripheral to increasing quantitative literacy.

Ideally, of course, critical thinking lessons ought to be taught across the cur-
riculum. We can imagine quantitative literacy lessons being taught in all sorts 
of classes. Couldn’t students learn how to read—and ask questions about—
say, news reports about new medical findings in science classes, or health 
classes, or social studies classes? Certainly this would be desirable, but getting 
the cause of quantitative literacy to spread beyond math classrooms obviously 
poses its own challenges. Those teaching other subjects will want to focus on 
what they see as the important content in their own subjects; they may doubt 
their qualifications or ability to venture into mathematical terrain; they may 
insist that teaching quantitative literacy is the job of math teachers; and so on.
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In short, it seems to me the cause of quantitative literacy faces two chal-
lenges: first, recognizing that quantitative literacy must encompass more than 
matters of calculation; and, second, finding ways to integrate quantitative lit-
eracy—and critical thinking more generally—into the curriculum.
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Quantitative Literacy for All: 
How Can We Make it Happen

Hugh Burkhardt*
University of Nottingham

This paper traces the essential elements of QL—from performance goals, 
through student learning activities, to their teaching implications and those for 
teacher education. It takes an engineering research perspective, pointing out 
that the power of situated learning depends crucially on how well designed and 
developed the situations are. It sees QL primarily as an end in itself, and a ma-
jor justification for the large slice of curriculum time that mathematics occu-
pies. It also points out that QL can be a powerful aid to learning mathematical 
concepts and skills, particularly for those who are not already high achievers.

I approach this important topic from the perspective of an educational 
engineer. Whereas the ‘science research’ approach aims for improved insights 
into the system being studied, these are only a starting point for an engineer; 
‘engineering research’, in education as elsewhere, seeks direct impact on the 
system through developing improved tools and/or processes (Burkhardt, 2006). 
This means that I shall say as much about models and exemplars as about prin-
ciples and research questions. 
———
* Hugh Burkhardt is director of the Shell Center for Mathematical Education at the University of 
Nottingham where has led a series of international projects, notably Balanced Assessment and 
Mathematics Assessment Resource Service. Burkhardt takes an 'engineering' view of educational 
research and development: it is about making a complex system work better, with empirical evi-
dence the ultimate guide. His core interest is in the dynamics of curriculum change, seeing as-
sessment as one important tool for change among the many that are needed to help achieve some 
resemblance between goals of policy and outcomes in practice. As well as assessment, his other 
interests include real problem solving and mathematical modeling, computer-aided mathematics 
education, software interface design, and human-computer interaction. He graduated as a theoreti-
cal physicist from Oxford University and the University of Birmingham, where he first developed 
his work on real problem solving. E-mail: Hugh.Burkhardt@nottingham.ac.uk.
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I shall treat as equivalent the various terms used for QL around the world: 
quantitative literacy or quantitative reasoning (US), functional mathematics 
(recent UK), mathematical literacy (most other places) and numeracy (origi-
nally defined in the British Crowther Report (1959) as “the mathematical 
equivalent of literacy” but now too-often corrupted to mean procedural skill in 
arithmetic). The distinctions between these terms that people try to make (see 
e.g. Smith, 2005) are minor compared with the distance of them all from cur-
rent classroom reality.

In the language of situated learning, this paper looks at two ‘activity sys-
tems’ (Greeno, 1998), the QL classroom and the professional development en-
vironment, pre-service and in-service. There is too little space here to discuss 
the most intractable, the educational systems of which these are part. Though 
often related to design research (Brown & Campione, 1994), most analyses in 
terms of situated learning seem to lack the evidential warrants that provide an 
adequate basis for informing design (Burkhardt & Schoenfeld, 2003). They fail 
entirely to address the engineering research that is needed to develop products 
robust enough for effective large-scale use. 

What is QL? 
PISA (OECD, 2003), representing an international consensus, defines it thus: 

Mathematical literacy is an individual’s capacity to identify and un-
derstand the role that mathematics plays in the world, to make well-
founded judgments and to use and engage with mathematics in ways 
that meet the needs of that individual’s life as a constructive, con-
cerned and reflective citizen. 

More succinctly, QL is thinking with mathematics about problems in ev-
eryday life. However, such verbal descriptions on their own are ambiguous—
they are easy to re-interpret in terms of one’s own experience. I find it clearest 
to specify performance goals through examples of assessment tasks, with their 
scoring rubrics, if needed. In the Appendices I offer two tests of mathematical 
literacy, one appropriate for “all well-educated adults,” the second for students 
around Grade 8. QL is exemplified by the tasks in these tests, perhaps along 
with some PISA tasks. The notes accompanying each test on the success of 
those who have tried them confirm that there is work to be done to make QL 
a reality—no surprise to any of us. Here let us look at just one of these tasks, 
based on a number of UK cases: 

Do Sudden Infant Deaths = Murder? In the general population, about 
1 baby in 8,000 dies in an unexplained “crib death.” The cause or 
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causes are at present unknown. Three babies in one family have died. 
The mother is on trial for murder. A medical expert witness says:

One crib death is a family tragedy; two is deeply suspicious; 
three is murder. The odds of even two deaths in one family 
are 64 million to 1.

Discuss the reasoning behind the expert witness’ statement, noting 
any errors, and write an improved version to present to the jury.

Situated learning and quantitative literacy 
How does this task relate to situated learning? The basic idea—that we need to 
understand learning as an active process in which students have to be engaged 
constructively—is long familiar, recognized by Dewey and other theorists and 
restated in the NCTM (1989) Standards as follows: “A person gathers, discov-
ers, or creates knowledge in the course of some activity having a purpose.”

At a more detailed level, Engle and Conant (2002) suggest that “produc-
tive disciplinary engagement can be fostered by designing learning environ-
ments that support: 

• problematizing subject matter,
• giving students authority to address such problems, 
• holding students accountable to others and to shared disciplinary 

norms,
• providing students with relevant resources.” 
Much of the research in the field amounts to rephrasing and refining these 

ideas, adding illustrations though often with little detail, and distinguishing 
this from other modes of analysis of learning. Greeno (1998) puts it thus:

Unlike behaviorist and cognitive research, which focus primarily on 
individuals, situative research takes larger systems, which we can call 
activity systems, as its primary focus of analysis. An activity system 
usually has a few people in it, along with whatever resources in the 
environment that they are interacting with. The main question for the 
analysis is how such systems function, especially how their compo-
nents are coordinated.

For this paper the bottom line on situated learning is that meaningful class-
room experiences with sense-making produce engaged, empowered, effective 
learners—not the dominant impression of current mathematics classrooms. 

To justify QL as a curriculum component, some mathematicians go further 
and assert:
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For most learners, thinking with mathematics about problems from ev-
eryday life offers powerful support for sense making in mathematics.
However true, this is an extraordinarily inward-looking view. For me and, 

I believe, for most people, the practical utility of being able to think math-
ematically about practical problems is the prime motivation for studying 
mathematics; its inherent beauty and elegance are merely a welcome bonus. 
I will return to this issue later, after discussing the challenges of making QL a 
classroom reality.

Tackling real world problems

Problem Report

Formulate

Compute Interpret

Validate

Figure 1. The phases of modeling

The standard diagram in Figure 1, summarizing the top-level processes 
of QL1, makes it clear that this involves more complex thinking than the short 
imitative exercises that dominate mathematics classrooms. However, in the 
last 40 years, we have learned how to teach the higher-level skills involved 
(see e.g. Burkhardt with Pollak, 2006). In brief, the following types of student 
learning activity are necessary:

• modeling experience in tackling a range of practical problems using 
mathematics, without prior teaching on closely similar practical 
situations—i.e. non-routine problems involving significant transfer 
distance2;

• instruction on strategies for modeling, a set of heuristics that facilitate 
the processes of Figure 1;

• analytical discussion by students of alternative approaches to a 
problem, and reflection on the processes involved.

These ingredients are central. How to engineer them into effective cur-
ricula at all levels is the still-unfinished story of the last 40 years. However, 
there is now a well-developed understanding of the key role of modeling and 
applications in a balanced mathematical education, and some high-quality ex-
emplification of how this can be realized in practice. The recent ICMI Study 
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14 Modelling and Applications in Mathematics Education (Blum, Galbraith, 
Henn, & Niss, 2007) gives a wide-ranging review of the field.

Details matter: The importance of good engineering
Much of the discussion of QL in the US is, like the text above, about matters of 
general principle. Probably the most important contribution I can make here is 
to point out that general principles are not enough—that the details matter. The 
difference between Mozart, Salieri and their many contemporaries of whom 
we have not heard was not in their general principles—the laws of melody, 
harmony and counterpoint were common to them all; it lay in their use of those 
principles in the design and development of their music. 

Good engineering recognizes this. Its essential elements are familiar from 
other fields: 

• build on prior work, both research and practice; 
• use expert and imaginative designers; 
• refine the designs through an iterative process of revisions, based on 

feedback from trials—ultimately in circumstances of personnel and 
support like those of the users; 

• monitor in the field for rare ‘side effects.’

This is a more complicated, and expensive, process than the traditional 
authorship approach. We compare these approaches in 2.2 and 2.3.

Design heuristics 
I say “general principles” because outstanding designers (and composers) work 
with sets of design strategies and tactics which are often not widely shared or, 
sometimes, even articulated by the designers. As in any field, many of these are 
heuristic strategies and tactics, derived directly from experiment—phenom-
enological and detailed. To take just one powerful example that is relevant to 
QL (see e.g. Phillips et al., 1988 for evidence): Moving students into teacher 
roles leads to higher-level learning.

Some outstanding teachers can work from general guidance alone. 
However, many teachers, even if they try, will fail and the whole enterprise 
may be discredited3. Excellence in design and systematic care in development 
of support will be important in equipping most teachers to make the innovation 
work in their classrooms. After all, most follow a published text in teaching 
mathematics they know well. Are they likely to succeed in demanding new 
areas with less support?
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Because of its importance, I am going to illustrate this point in some de-
tail, comparing the traditional approach, used by innovative teachers and most 
writers of educational materials, with the more powerful, and more expensive, 
research-based approach of good engineering. Those who produce materials 
for others to use face two kinds of challenge: 
A. How effectively do the learning activities advance student learning? 
B. How well do the materials communicate the necessary knowledge and 

skills needed by teacher-users to handle the activities in the classroom?
I will use the problem of designing a board game to exemplify the gen-

eral points. This learning activity, in which students design, construct and 
evaluate their own games, has often been introduced by innovative teachers 
in British schools. By way of comparison, we look at a Numeracy through 
Problem Solving module we developed, offering both teaching materials and 
high-stakes assessment (Shell Centre, 1987–89). 

The traditional approach
Most educational materials are written by experienced teachers who seek to 
show the way they work to fellow professionals. How are new learning activi-
ties developed? Let us begin with the board game example. Typically, an in-
novative teacher asks her students to bring to class their favorite board games. 
Groups of students play some of these games, thus exploring some existing 
examples. The teacher then asks each group to design a game of their own, 
providing an opportunity for creative independent thinking and a product of 
which they can be proud. This can be a worthwhile activity in which some 
mathematics may or may not emerge. 

However, commercial games are remarkably well-designed and careful-
ly developed; the class has little chance of producing something comparably 
good. What emerges is usually a minor variant of a commercial game, nar-
rowing the creative horizon. In terms of Question A above, this is a valuable 
enrichment of any curriculum dominated by imitative exercises but a too-lim-
ited experience for the students. The design load on the teacher (an important 
concept) in this approach is large. For the teacher-author, writing up their ap-
proach without extensive trialing by others provides no evidence to answer the 
communication question B.

An engineering research approach
Numeracy through Problem Solving (NTPS) grew from my concern that many 
students see school mathematics as irrelevant to their present or future lives 
—except as “something we have to take.” Earlier exploratory developments 
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had shown that QL skills can be taught. NTPS was partly inspired by USMES 
(1969)—and recognition of the unreasonable demands this pioneering project 
made on teachers. 

We started by brainstorming possible topics with a group of exceptional 
teachers. The 30 topics that seemed promising were looked at through further 
discussion and some informal trials by the teachers. Some continued to look 
good; others less so. (Run a Swap Shop, in which students bring things they 
want to barter, was popular but produced classroom chaos. With hindsight we 
should have seen that 30x29/2 potential trading pairs was a problem!) We re-
duced the 30 to 10 and, over 4 years, developed 5 modules. 

The design team, led by Malcolm Swan, decided on a 4-stage strategy for 
the learning sequence. Design a Board Game was the first to be developed. It 
worked out like this:

Stage 1: Students explore the domain by working on and evaluating exemplars provided. 
For this module we designed five bad games. The student’s job was to find the (many) 
faults in each and suggest improvements. For example:

The Great Horse Race Rules

1. Put the horses on their starting positions, 1 to 12.
2. Each player chooses a different horse. If there are 

only a few players, then each can choose two or 
three horses. The remaining horses are still in the 
race but no one ‘owns’ them.

3. Roll two dice and add the scores.
4. The horse with that number moves one square 

forward.
5. The first horse to the finish wins.

In The Great Horse Race every student can 
make progress, including many who would normally 
have great difficulty with the binomial distribution of 
probabilities. (The games were also designed to bring 
out mathematical concepts.) The students learned a 
lot from each game, notably the basics: that a game needs a board, rules for play, and 
for winning. (They were also delighted that the teaching materials, containing so many 
mistakes, came from the examination board—an unexpected bonus.) 

Note that, because the games had faults, some obvious, others less so, the students’ 
own games were going to be better than these, guaranteeing a feeling of success. 

Stage 2: Generate and sift ideas, make a plan. Students in a group share ideas for vari-
ous new games, choose one, and develop a rough plan for the board and the rules. A 
great variety of games resulted4.

Stage 3: Develop and implement the plan in detail. Each group of students produces a 
detailed design, makes it, and checks the finished version to see it works well, revising 
if necessary.
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Stage 4: Each group evaluates the things that the other groups have produced. The 
groups exchange games and play them, and write comments. When they are returned, 
each group re-assesses its own game in the light of another group’s comments. The 
class may or may not vote for favorites.

The design skill, experience and effort exemplified here were matched by 
an iterative sequence of trials in increasingly representative classrooms. This 
richness of feedback at all stages is the main difference between these research-
based methods and the traditional approach, which relies on the extrapolation 
of craft-based skills to new situations. Extrapolation is generally unreliable, 
which is why most fields of product development (engineering, medicine,…) 
use research-based methods

Assessment in NTPS also follows an unusual model. Embedded assess-
ment tasks test each student’s understanding of the ongoing work—important 
for group projects. For example, the embedded assessment tasks in Stage 1 
include finding faults in the following game:

Snakes and Ladders. This is a game for two play-
ers. You will need a coin and two counters:

• Take turns to toss the coin. If it is heads, 
move your counter 2 places forward. 
If it is tails, move your counter 1 place 
forward.

• If you reach the foot of a ladder, you must 
go up it. If you reach the head of a snake, 
you must go down it.

• The winner is the first player to reach 
‘FINISH.’

External examinations, some months after the module work, assess their 
ability to transfer what they had learned to more or less similar problem con-
texts, within the same domain (here board games) or in structurally related 
areas. Two general points on assessment design are worth noting: 

• The students’ common experience of working on the module gives the 
assessment task designer some control over the transfer distance. 

• Rich and open tasks allow responses at a wide range of levels; 
this is commonly used in other subjects (essays, for example) but 
underexploited in mathematics.

To summarize: each NTPS module provides learning and teaching materi-
als, with embedded and external assessment; students work in small groups 
over three weeks per module; each module has real outcomes, with the class 
evaluating other groups’ products. The other four modules are: Be a Shrewd 
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Chooser—how to make better consumer decisions; Plan a Trip—for the whole 
class out of school; Produce a Game Show—design and put on a TV quiz; Be 
a Paper Engineer—design pop-up cards and boxes. Students see this type of 
work as relevant to their current and future lives, especially when everyday 
contexts (Shrewd Chooser or Trip) are mixed with others that have an element 
of fantasy (Quiz Show, Paper Engineer and Board Game) but develop similar 
process skills. 

Evaluation
The students viewed this as a serious enterprise, working together to develop 
a product they could be proud of. Most were motivated to take responsibility 
for the quality of their own and their group’s work. Post interviews showed 
that nearly all students found the work interesting, challenging and enjoyable5. 
When asked to compare this work with “what you normally do in maths,” their 
reaction was surprisingly strong; some groups burst out laughing, explaining 
that no-one could see their normal mathematics as anything other than a boring 
imposition. (Their teachers were not weak teachers of mathematics.) 

Teacher reaction to NTPS was almost as positive. They enjoyed and val-
ued the experience. They were relieved at the end of a module to get back to 
less taxing teaching, but looked forward to the next module in a few months 
time. In the outcome, though the modules were developed with students across 
the ability range, they were used more with low-achieving students—anything 
that works well with them is welcome, while there is pressure for high-achiev-
ers to stick to the standard track.

Parental concerns were addressed with carefully structured parent’s meet-
ings. Though they welcomed the “relevance,” they had concerns about soft 
options. These disappeared when they tried problems from the modules and 
compared their efforts with student work.

Future prospects 
After a two decade gap, the British are again taking an active interest in QL. 
The Bowland Trust and the Government are funding a set of 3–5 lesson “case 
studies” on a wide range of “real world” topics. We have been asked to develop 
two: Reducing road accidents and How risky is life? These are both challenging 
but we are having fun! The materials are due out in 2008 in electronic and print 
forms. There have been related developments in Germany and Denmark. 

For the US, we are working with some others on a proposal to develop QL 
units, probably for submission to NSF in due course.



146 Calculation vs. Context

I hope that I have said enough to show how detailed design considerations 
and careful development can be crucial in the success or failure of general 
principles. Good engineering of the tools and processes is important in increas-
ing the probability of large-scale success in implementation, for QL as for any 
profound innovation. 

Implications for teaching style 
As the discussion of classroom learning confirms, QL cannot be taught 

with the standard EEE (explanation–example–exercises) approach. What extra 
skills do teachers need? The key elements include:

• welcoming the world beyond mathematics, in particular the world 
of students’ lives and their imaginations, in the way that teachers of 
English and other subjects do;

• handling discussion in the class in a non-directive but supportive way, 
so that students feel responsible for deciding on the correctness of their 
and others’ reasoning and do not expect either answers or confirmation 
from the teacher;

• giving students time and confidence to explore each problem thoroughly, 
offering help only when the student has tried, and exhausted, various 
approaches (rather than intervening at the first signs of difficulty);

• providing strategic and tactical guidance, rather than showing students 
who have difficulties how to do the problem, or dividing it into pieces;

• finding supplementary questions that build on each student’s progress 
and lead them to go further;

• helping students to assume responsibility for their own work, to check 
their reasoning and their answers and, in discussion with other students, 
to evaluate the quality of their work.

These are profound changes, implying a change in the “classroom con-
tract” (Brousseau, 1997) of mutual expectations between teacher and stu-
dents—a change that needs to be made explicit by the teacher6. Professionals 
cannot easily change their well-grooved rituals of practice. The available re-
search shows that this takes time and growing experience based on well-en-
gineered support. The specific foci above will help to provide teachers with 
a solid start along the path of developing the variety of their mathematical 
questioning, which is so important in helping students of all abilities reach new 
levels of achievement. 

Among teachers, there is too-often an unfortunate correlation between 
knowing more mathematics and having an inward-looking view of it7. This 
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will make QL an unwelcome challenge for some high school teachers. For 
elementary and middle school teachers, the challenges of including real world 
problems are not as great. They have lived in a less specialized world. However, 
teachers respond to the success of their students, particularly those who find 
the subject difficult. Their students will flourish in QL.

All this is challenging at first, but teachers who acquire these skills seem to 
continue to use them; they do not revert to traditional styles. Well-engineered 
materials can provide enormous support to teachers and students, whether in 
modeling or in pure mathematical problem solving. Such materials are essen-
tial for most teachers in their first few years of such teaching, if they are to 
achieve success. 

The core of the professional development needed is for teachers to gain 
the same kind of experience of real problem solving as their students will, 
using much the same materials, and to reflect on the teaching style changes it 
demands—the focus of the next section.

Who should teach QL? 
In the excellent book Mathematics and Democracy (Steen, 2002) I was aston-
ished to see the view that QL should not be taught by mathematics teachers as 
part of the mathematics curriculum, but become a cross-curriculum responsi-
bility. I disagree for the following reasons:

• Teaching QL well is mathematically demanding8, even for mathematics 
teachers; those less well-prepared could not cope.

• Utility is the reason why mathematics has such a large slice of 
curriculum time; in this era of unpredictable future challenges, utility 
requires QL.

• The cultural importance of mathematics is surely not greater than, say, 
music; how can this alone justify so much more curriculum time?

• As the experience of statistical education9 has shown, it is extremely 
difficult to establish cross-curricular teaching—even harder than 
introducing a new component into an established subject. If QL is not 
taught in mathematics, it will not happen. 

• QL facilitates the learning of mathematics.

Implications for teacher education
Now, to come at last to the point of this conference, what does this mean for 
teacher education, both pre-service and in-service? I am no expert in this field, 
but I am a keen and experienced observer. I know that there are many schools 
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of education around the country and the world for whom the teaching style ele-
ments enumerated above (with the probable exception of the first) are already 
major aims of their programs. For them the main challenge is to enlarge the 
problem set they build into their courses in the way I have outlined.

QL will prove challenging to many teacher educators in mathematics, who 
themselves may not use much of their mathematics in their lives outside the 
classroom10. How many of us do ‘back of the envelope’ estimations to check 
the assertions of advertisers or politicians? How many would, as a juror or a 
lawyer, have queried the argument presented by the expert witness in the crib-
death problem cited above—elementary though the mathematics is? 

Again the way forward is for the teacher educators to gain the same kind 
of experience of real problem solving as will their students, using much the 
same materials.

Teachers, like students, benefit from learning constructively—inferring 
general principles from their own experience of handling specific examples. 
Our and others’ experience favors a sandwich model. The essence of this well-
established and powerful approach is reflection among teachers, guided by an 
expert leader and/or well-engineered materials, interleaved with work with 
students in their classrooms—hence the name. The sequence is:

• Launch. Teachers together go through the learning activity in the role 
of students, then discuss the experience and how they will handle it in 
the classroom.

• Teach. In their own classrooms, the teachers take their students through 
the activity, collecting samples of student work and, later, making notes 
on the experience. 

• Reflect. In the next professional development session, teachers share 
their experiences and their students’ work, reflecting on the learning 
activity, student responses to it, how they might handle it differently, its 
wider implication for later lessons in the unit and for other teaching.

This model gives teachers a constructive learning experience, provided 
it is well-engineered so that the challenges and issues arise in a controlled 
way, digestible in form and pace, from specific substantial problems. Malcolm 
Swan (2006) explains the research basis of the sandwich model in the follow-
ing terms:

“Even in the face of contradictory evidence teachers hold tenaciously 
onto existing practices. In his literature review, Calderhead (1996) 
notes how pre-service teachers become more liberal and child-cen-
tered during training and then revert to control-oriented belief sys-
tems when they enter their full-time career. When well-grooved 
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practices are challenged, then teachers may react both affectively and 
cognitively. Any attempt to deconstruct someone’s beliefs and prac-
tices through argument may be perceived as an attack on his or her 
own identity. Beliefs are more likely to be changed through reflect-
ing on experience than through persuasion. It is only through making 
pre-existing experiences explicit, challenging them and offering op-
portunities to examine, elaborate, and integrate new experiences that 
teachers’ behaviors are likely to change.

The situated nature of beliefs may thus mean that it is possible 
for teachers to adopt a new belief system in a restricted domain, or at 
least ‘suspend disbelief’ and act as if they believed differently. They 
may then subsequently reflect on the experience and accommodate or 
reject this new belief at least in a tentative way until it may be further 
tested. 

This suggests that we cannot seek to change someone’s beliefs 
so that they will behave differently. Rather, we encourage them to be-
have differently so that they may have cause to reflect on and modify 
their beliefs (Fullan, 1991, p.91). Teachers also need the support and 
resources to experience new ways of working. In the light of this, I 
suggest the following principles on which I based the development of 
an in-service program: 
• Establish an informal candid culture in which existing beliefs are 

recognized, made explicit and are worked on in a reflective, non-
judgmental atmosphere.

• Illustrate vivid, contrasting practices and discuss the beliefs that 
underpin these. These may provide ‘challenge’ or ‘conflict.’

• Ask teachers to ‘suspend’ disbelief and act in new ways, ‘as if they 
believed differently.’ Offer mentor and a network of support as they 
do this.

• Encourage teachers to meet together and reflect on their new 
experiences and the implications that these offer. 

• Ask teachers to reflect on and recognize the growth of new beliefs.”

For in-service professional development the sandwich model is often 
straightforward to organize—participant teachers have their own classes and 
usually, with discretion and a reasonably supportive principal, can try new 
things with them. 

In view of my inexperience in pre-service teacher preparation programs, 
my suggestions must be modest but introducing QL here is surely more chal-
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lenging. The student teacher is a guest in the school, observing and/or substi-
tuting for the class teacher in an established program. For schools in which 
QL is already part of the implemented curriculum, the negotiations should be 
straightforward. It is made easier for QL than more didactic programs because 
of the less directive roles needed for teaching QL. Team teaching is an ideal 
entry mode. For other schools, the best hope may be to ‘sell’ QL to the princi-
pal as an obvious lacuna in mathematics curricula that is now coming onto the 
agenda. “Wouldn’t you like to see what it looks like in the classroom, giving 
your school a flying start?” The contribution of QL to learning mathematics 
itself, discussed below, should always be kept in view.

Live in-service teacher education is expensive, but some is essential. It 
can be made much more effective by using good ‘DIY’ materials that support 
ongoing activity among teachers in a school between whatever live sessions 
may be available and affordable. Past experience shows that providers of live 
professional development welcome such support for continuing professional 
development. Is this true for teacher preparation programs?

Assessing teacher effectiveness raises a range of issues beyond the space I 
have here. I would like to make one obvious point—any methodology should 
look for changes in a teacher’s classroom behavior and relate them to the list 
enumerated above. Well-designed structured observation before, during and 
after professional development is rarely part of the development process or of 
subsequent evaluation11; when it is used, it generally leads to radical redesign 
of the professional development along the lines sketched here.

QL and pure mathematics—not a zero-sum game
Anyone who argues for adding a new element to the curriculum must address 
the fact that it is seen as already overcrowded. Mathematics texts now have far 
more pages in them than any teacher can use12. One could therefore argue that 
to add more ‘goodies’ to the pile changes nothing, except marginally to de-
crease the already-small chance of anything new being used. More positively, 
a significant amount of work on QL can actually reduce the overcrowding by 
reducing the large amount of time (up to 35%) spent re-teaching concepts and 
skills (an ineffective approach to remedying misconceptions).

Modeling real world situations supports the learning of mathematical con-
cepts and skills in several ways:

(a) It provides multiple concrete embodiments of mathematical concepts;
(b) It builds fluent translation skills between different representations;
(c) It involves extended chains of reasoning; for which
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(d) It requires procedural accuracy, so encourages checking (not moving 
on regardless).

Indeed, many active proponents of modeling are mainly motivated by 
its power in teaching mathematics better. The Freudenthal Institute team, for 
example, say explicitly that the prime goal of their Realistic Mathematics 
Education (RME) approach is deeper understanding of mathematics itself. 
Mathematics in Context materials show this focus. The contributions of model-
ing to other mathematical competencies is surveyed in ICMI Study 14 (Blum, 
Galbraith, Henn, & Niss, 2007) in Section 3.4 which I (somewhat ironically, 
given my priorities) was asked to co-edit.

To illustrate (a), let us return to The Great Horse Race discussed earlier 
and the discussion by Swan et al (ibid. Section 3.4.1) of the concept formation 
it supports. 

All students quickly recognize that Horse 1 is not a good bet! A few 
have the misconception that, because there are two dice, higher num-
bered horses will move more rapidly. Even they, through playing the 
game, soon realize that horses in the middle will move faster “because 
there are more ways of making 7 than 11 or 12.” Most will enumer-
ate these “1+6, 2+5, 3+4...”; some initially miss that 4+3 is different 
from 3+4 until the teacher suggests two different colored dice. More 
advanced students consider the effect of the length of the track on 
the likely outcome. This game thus proves an effective (and quick) 
stimulus to concept formation. Furthermore if every student colors 
the squares traversed by each horse, they obtain a frequency distribu-
tion. When these are displayed around the classroom, students have 
an immediate visual of the variability of sample data. If the teacher 
enters these data in a spreadsheet, the frequency distribution of the 
totals will provide a better fit to the theoretical probabilities than will 
those of individual students.

The detailed design of this activity, guided by the student book, is crucial 
to its power and range. Its robustness in classroom use, not to mention some 
design ideas, comes from revisions, each guided by the feedback from succes-
sive rounds of closely observed trials. In situated learning the quality of the 
situation is crucial.

On translation skills, (b) above, when students work on modeling tasks, 
they express their thoughts in a variety of representations: words, diagrams, 
tables, spreadsheets, graphs, algebraic expressions. Indeed, many real world 
problems begin with information provided in a variety of representations. 
Since any representational medium will highlight some aspects of the struc-



1�2 Calculation vs. Context

ture, while obscuring others, students who engage in modeling activities de-
velop translation skills—the ability to move information between different 
representations. 

Items (c) and (d) above are self-evident. On (d), note how the pay-off from 
checking changes from short items to longer chains of reasoning which, if they 
are not correct throughout, leave you completely at sea.

Shorter modeling activities, too, have a part to play in both QL and the 
developing of robust mathematical skills. The interpretation of graphical infor-
mation, reflecting (b), is one example (see Swan et al., 1986)

Finally, it is important to absorb the distinction, summarized in Figure 2, 
between:

• standard applications of a mathematical topic, and 
• active modeling of a non-routine practical situation, to which several 

mathematical tools usually contribute. 
Each is a necessary part of QL but they have different roles. 

various math tools

various applications

active modelling

math topic

practical situation

illustrative applications
Figure 2. Standard illustrative applications v non-routine active modelling

Standard illustrative applications provide links between the real world 
problems and your mathematics toolkit. They can often be adapted to help 
with new problems—indeed all problem solving involves recognizing familiar 
structural features in a problem situation. However, tackling new problems 
effectively depends on experience with the processes of active modeling, sup-
ported by some teaching of the strategies and tactics that help in using one’s 
mathematical toolkit to be more quantitatively literate. 

A few key points
The following points may be worth restating:

• For QL, as with all situated learning, the quality of the situation is 
central to success.

• Most teachers will need at least as much support, in both materials and 
live teacher education, as they expect in familiar areas of mathematics 
teaching.
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• High quality in both materials and processes depends on combining 
research awareness, imaginative design, and careful development of 
products and processes— an engineering research approach.

• Teacher education for this less familiar mathematical competency 
should be through constructive learning, involving teachers and teacher 
educators in the mathematical activities, linked to reflection on their 
implications for both the subject and its teaching.

• QL will help students learn more pure mathematics more effectively, 
building deeper understanding, richer connections and greater accuracy. 
This is particularly true for weaker students, narrowing “the gap.”13
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Appendix A: Functional Mathematics for Educated Adults

A few thought-provoking tasks that any well-educated adult could, and should, 
be able to do without having been taught the specific problem, selected from 
the Mathematics Assessment Resource Service (MARS), Shell Centre for 
Mathematical Education, University of Nottingham. Commentary on the tasks 
and responses to them appears at the end of the appendix.

Sudden Infant Deaths = Murder?
In the general population, about 1 baby in 8,000 dies in an unexplained “crib 
death”. The cause or causes are at present unknown. Three babies in one family 
have died. The mother is on trial. An expert witness says:



Burkhardt: Quantitative Literacy for All 1��

One crib death is a family tragedy; two is deeply suspicious; three is 
murder. The odds of even two deaths in one family are 64 million to 
1.

Discuss the reasoning behind the expert witness’ statement, noting any 
errors, and write an improved version to present to the jury.

Conference Budget 
Your job is to plan a conference budget, using a computer spreadsheet. You 
have already made a start:

 (i)  Complete the entries for Wednesday in column D.
(ii) Calculate appropriate totals in column E.
(The spreadsheet was on a computer.) 

A B C D E
College charges Number @ £ each £

Monday Buffet Supper 30 17.00 0
Single En-suite Accommodation 30 40.00 0

Tuesday Breakfast 30 8.00 0
Morning Coffee 30 1.90 0
Luncheon 30 15.00 0
Afternoon tea 30 1.90 0
Dinner served 30 50.00 0
Single En-suite Accommodation 30 40.00 0
Plenary Room 30 15.77 0
Breakout rooms 2 85.10 0

Wednesday Breakfast 30 0
Morning Coffee 30 0
Luncheon 30 0
Afternoon tea 30 0
No Dinner 30 0
Single En-suite Accommodation 30 0
Plenary Room 30 0
Breakout rooms 2 0

Thursday Breakfast 30 8.00 0
Morning Coffee 30 1.90 0
Luncheon 30 15.00 0
Afternoon tea 30 1.90 0
Dinner 30 17.00 0
Single En-suite Accommodation 30 40.00 0
Plenary Room 30 15.77 0
Breakout rooms 2 85.10 0

Friday Breakfast 30 8.00 0
Total
charges 0
VAT 0
Total 0

Elementary School Teachers
In a country with 300 million people, about how many elementary school 
teachers will be needed? Try to estimate a sensible answer using your own 
everyday knowledge about the world. Write an explanation of your answer, 
stating any assumptions you make. 
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Bike or Bus
Terry is soon to go to secondary school. There is no school bus. The bus trip 
costs $1 and Terry’s parents are considering the alternative of buying him a 
bicycle.

Help Terry’s parents decide what to do by carefully working out the rela-
tive merits of the two alternatives.

Right Turns
The truck is stopped at traffic lights, 
planning to turn right. The cycle is 
alongside.

If the cyclist waits for the truck 
to turn before moving, what will 
happen? Explain why this will hap-
pen with a diagram.

What would be your advice: to the truck driver? to the cyclist? Give rea-
sons in each case.

Scheduling Traffic Lights
A new set of traffic lights has been installed at an intersection formed by the 
crossing of two roads. Right turns are not permitted at this intersection.

For how long should each road be shown the green light? Explain your 
reasoning clearly.

Being Realistic About Risk
“My sixty-year-old mother, who lives in New York, gets frightened by newspa-
pers. One day she is afraid of being a victim of crime, the next she is frightened 
of being killed in a road accident, then it’s terrorists, and so on.”

 (i) Use a website with national statistics to estimate the chances of my 
mother being a victim of the above events, and others you think she 
might worry about. 

 (ii) Write down some reassurance you would give her—and compare the 
likelihood of these events with the probability that women of her age 
will die during the coming year.

Commentary on the tasks, and responses to them:

Sudden Infant Deaths = Murder? What we expect here is not a full statistical 
analysis, which would need more information, but a recognition that the 
reasoning presented is deeply flawed. There are two elementary mistakes in 
the statement, and one that is a bit more subtle. It would be correct to say:
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1. The chance of these deaths being entirely unconnected chance events is 
very small indeed—if there has been one death, the chance of two more 
unconnected deaths is about 64 million to one.

2. What can the connection be? It may be that the mother killed the children; 
on the other hand, particularly since we do not understand the cause(s) 
of crib death, there may be other explanations. For many conditions 
(cancer and heart disease, for example) genetic and environmental 
factors are known to affect the probability substantially.

Any lawyer or judge with functional mathematics should have seen prob-
lems with the witness statement. It is not lack of basic skills that was their fail-
ing (They could surely have worked out the chance of a double six on rolling 
two dice as 1/36) but an understanding of the necessary assumptions. 

Conference Budget. This is a task we give (on a working spreadsheet) 
to candidates for the post of Secretary/Administrator in the team. Most 
are graduates. All “know Excel”. None complete the task. Most see that 
Wednesday’s values in Column D are probably the same as Tuesday’s and 
Thursday’s. Few enter the appropriate, or indeed any, formulas in Column 
E. (Formulating relationships is a basic piece of algebra that is neglected in 
schools—and mathematics tests.) Some even work out the row totals on a 
calculator, entering the values!

Elementary School Teachers. This kind of back-of-the-envelope calculation 
is an important life skill. Here it requires choosing appropriate facts (6 years 
in elementary school out of a life of 60-80 years, one teacher for 20-30 kids), 
and formulating appropriate proportional relationships giving (300*6)/(70*25) 
~ 1 million primary teachers (to an accuracy appropriate to that of the data). 
This kind of linkage with the real world, common in the English language arts 
curriculum, is rare in school mathematics (and absent in tests).

Bike or Bus and Scheduling Traffic Lights. See Ice Cream Van in Appendix 
B.

Right Turns. Functional mathematics often involves space and shape, too.

Being Realistic About Risk. Education, and functional mathematics in 
particular, can help narrow the gap between perceived and real risk. Given the 
power of anecdote over evidence, exploited daily by the media, this is a major 
challenge; meeting it could make a huge contribution to people’s quality of 
life, and that of their children. Few people have any sense of the magnitude of 
specific risks, or any idea of the unavoidable ‘base risk’ for someone of their 
age. (Note that only order-of-magnitude estimates, not accurate numbers, are 
relevant here.)
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Explicitly teaching students to use their mathematics on real problems is 
now proven, with typical teachers; it is essential to functionality. These ex-
emplars also show how deterministic and statistical reasoning intermesh in 
functional mathematics. 

Appendix B
Functional Mathematics for Grade � or �

A few thought-provoking tasks that any well-educated student should be able 
to do by age 15 without having been taught the specific problem, selected 
from the Mathematics Assessment Resource Service (MARS), Shell Centre for 
Mathematical Education, University of Nottingham. Commentary on the tasks 
and responses to them appears at the end of the appendix.

Freeway Journey
Referring to the figure below:

• Do they have to stop for gas? Explain your reasoning.
• Suppose they decide to stop for 10 minutes. At what time will they 

reach Los Angeles?

0 20 40 60 80 100

mph
09:20 Empty Full

FUEL

No, we’ll be OK. The tank holds about 15 gallons,
and I filled it up yesterday. We haven’t got time to stop.

How many miles does this car get to a gallon?

On the freeway, at this speed, about 35 miles per gallon.

Los Angeles
270 miles

I think we need to stop for gas before we reach L.A.
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At the Airport

Den’s Currency Exchange
Currency We Buy We Sell

$ US Dollar £ 0.533 £ 0.590
€ Euro £ 0.660 £ 0.730
No commission!

How many Euros (€) would you get for £500?
How many Pounds (£) can you get for $700?
How much would you have to pay, in Pounds and Pence, to get exactly 

€550?

Paper Clips
This paper clip is just over 4 cm long. How many paper clips like this may be 
made from a straight piece of wire 10 meters long?

Ice Cream Van
You are considering driving an ice cream van during the Summer break. Your 
friend, who “knows everything”, says that “It’s easy money”. You make a few 
enquiries and find that the van costs $600 per week to hire. Typical selling data 
is that one can sell an average of 30 ice creams per hour, each costing 50c to 
make and each selling for $1.50. 

How hard will you have to work in order to make this “easy money”? 
Explain your reasoning clearly.

Cold Calling
The following is part of a genuine letter of complaint to a bank.

I would like to complain about the behavior of XYZ Bank and the 
advice given during a recent unsolicited telephone call. Having been 
told I was “pre-approved” for a $5,000 loan, the operator asked me 
for my financial details. I told her that I currently had two credit cards, 
one with a balance of $3000 and one with $1000. She said that they 
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could consolidate these debts into a single payment which would be 
cheaper. I pressed her on the APR which she explained was 16.4%, 
which caused me to decline the loan because my two credit cards 
are currently at 7% and 9.9% APR respectively. The operator then 
informed me that their loan would work out cheaper, because 7% and 
9.9% works out at 16.9%, nearly 0.5% higher than the bank loan.

(i) Explain what is wrong with the operator’s reasoning.
(ii) How much more expensive is the bank’s consolidated loan?

Commentary on the tasks, and responses to them

Motorway Journey. From an actual test. Most examples of functional 
mathematics have been eliminated in the fragmentation of tasks to assess 
separate micro-skills. 

At the Airport. It is interesting 
to compare this with a question 
from a current UK school 
test (on the right). Note how 
the simplification of the 
presentation leaves a major 
gap from real functionality. 
This unreality, characteristic of 
secondary school mathematics, 
confirms many students’ view 
that the subject has no relevance 
to their lives.

Ice Cream Van. This task was used in a research study of the performance of 
120 very able 17-year-old students. Many solved the tasks, using arithmetic and, 
sometimes graphs. None used algebra, the natural language for formulating 
such problems. Their algebra was non-functional, despite 5+ years of high 
success in the standard imitative inward-looking 
algebra curriculum.

Paper Clips. This task exemplifies a step towards 
functionality; a school mathematics version is 
shown on the right.

Cold Calling. A common misconception, and 
con, to unravel. Explicitly teaching students to use 

The table shows the exchange rates between 
different currencies: 

£1 (Pound) is worth € 1.45 (Euros)
$1 (Dollar) is worth € 0.81 (Euros)

(a) Jane changes £400 into euros. How many 
euros does she receive?

(b) Sonia changes £672 euros into dollars. 
How many dollars does she receive? 

A semi-circle has a diam-
eter of 12 cm. Calculate 
the perimeter.

12 cm



Burkhardt: Quantitative Literacy for All 1�1

their mathematics on real problems is now proven, with typical teachers; it is 
essential to functionality. These exemplars also show how deterministic and 
statistical reasoning intermesh in functional mathematics.

Endnotes
1 Pure mathematical problem solving has a similar structure, though there are important 
differences.
2 Transfer distance is a measure of how different two problems are, and so of how 
non-routine a task is, how far it differs from tasks with which the student is familiar. An 
important concept, no-one has seriously tackled the interesting challenge of inventing 
a practical way to quantify it, perhaps partly because it depends on the student’s whole 
prior experience.
3 I see the history of “problem solving” in US schools in the 1980s as an instance of 
this. After adoption by NCTM as a theme, much general advice was made available but 
little or no fully developed teaching material. Not much happened. At the Shell Centre 
we adopted a different approach, working with an examination board to develop coor-
dinated pressure (new high-stakes exam tasks) and support (new teaching materials). 
These are published in (Shell Centre, 1984).
4 In a few schools, the teachers decided to make this a joint project with the Art or Design 
departments, with excellent results. We encouraged this, but making this a requirement 
would have killed the project—and its effect on student attitudes to mathematics.
5 The exceptions were a small proportion of normally high-achieving students who 
found being faced with a new ‘game’ of a different kind somewhat threatening.
6 When we began to develop support for problem solving in pure mathematics (Shell 
Centre 1984), the first exploratory set of examples we gave to students was headed 
“THIS IS NOT A MATHS EXAM.” It was, of course, but not what they expected of 
one.
7 The evaluation of the USMES project (1969) found that mathematics teachers were 
the worst USMES teachers; the best were “drop-out Art teachers!” A case can be made 
for “style specialization” —teaching investigation is as far from traditional EEE math-
ematics teaching as teaching some other subjects. Let those math teachers who can do 
it, concentrate on it.
8 “….the sophisticated use of elementary mathematics,” in Lynn Steen’s immortal 
phrase, is not something to expect from those with weak mathematics.
9 Statistics educators have always seen QL as central and, mainly for this reason, sought 
to separate themselves from mathematics education; however, this separation is unhelp-
ful. Many problems should be tackled deterministically, at least initially; sometimes 
the analysis must take random variation into account. (Statistics has no monopoly on 
data.)
10 The “test for well-educated adults” in Appendix A is a useful self-evaluation tool.
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11 Indeed there are those who would regard classroom observation as unpardonably 
intrusive, regarding professional development as a civilized exchange between fellow 
professionals in which the sole criterion of success is whether the teacher found the 
experience valuable.
12 This is primarily because they are designed, not for teachers, but for the state adop-
tion processes of Texas and California. To be considered, let alone adopted, text pack-
ages have to check every box on a list that seems to be the union of the wishes of the 
members of the adoption committee. From this wish-list, teachers select what they want 
to use—often just what they know well.
13 … but not guaranteeing the early fluency in abstract algebra that seems to be a prime 
current goal in the U.S.
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The Licensure of Teachers for Quantitative 
Literacy: Who Should Be Entitled to Teach QL?

Frank B. Murray
University of Delaware 

The United Kingdom’s Department for Education and Skills defines numer-
acy, otherwise know as quantitative literacy in the United States, somewhat 
broadly and imprecisely as follows:

Numeracy is a proficiency which is developed mainly in mathemat-
ics but also in other subjects. It is more than an ability to do basic 
arithmetic. It involves developing confidence and competence with 
numbers and measures. It requires understanding of the number sys-
tem, a repertoire of mathematical techniques, and an inclination and 
ability to solve quantitative or spatial problems in a range of contexts. 
Numeracy also demands understanding of the ways in which data are 
gathered by counting and measuring, and presented in graphs, dia-
grams, charts and tables.

There is no inherent reason that the symbol systems associated with or-
dinary literacy and language would be intrinsically different from the system 
entailed in quantitative literacy as the mind seems to be equivalently disposed 
to support both language and numeracy. Wynn (1992), for example, argues that 
humans are innately endowed with arithmetical abilities, and she and others 

———
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of Psychology at the University of Delaware. He served as dean of the College of Education 
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in Washington, DC. His Ph.D. is from Johns Hopkins University and for his contributions to the 
fields of child development and teacher education, he was awarded an honorary doctorate from 
Heriot-Watt University in Edinburgh, Scotland in 1994. E-mail: fmurray@udel.edu.
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have found evidence of numeracy in infants as young as 3–5 months (equiva-
lence of sets, ordinal discrimination, addition/subtraction, cross-modal numer-
ic sensitivity). Basic numeracy (determining the number of objects without 
counting, ordinality, counting, number conservation, simple arithmetic) seems 
governed by innate developmental mechanisms, because numeracy emerges 
spontaneously in all cultures and in all typical environments. It seems also to 
be the case (Ferrari & Sternberg, 1998) that these basic actions are performed 
by rote initially, and only later, reinforced by the culture, do they acquire a con-
ceptual representation along with some learned strategies (e.g., finger count-
ing, min or count-on), procedural knowledge (it is illegal to divide by zero), 
translation of verbal statements into numerical propositions (dozen refers to 
12), and certain beliefs (mathematics requires innate ability, is for men, or that 
there is only one right answer in mathematics). 

Crosby (1997) makes a case that historically the well-understood and 
transforming effects of language on cognition are also found for quantification. 
His thesis is that in the late thirteenth century a new way of thinking emerged 
that quantified time (the first mechanical clocks), space (drawing in perspec-
tive), finances (double-entry bookkeeping) and visualized reality as aggregates 
of uniform quantified units—leagues, miles, pounds, hours, minutes, and mu-
sical notes—that expanded numbers from their nominal and ordinal properties, 
available beforehand in ordinary language, to the powerful additional proper-
ties of equal intervals and ratios, which are available to the “counting person” 
only when there is true quantification.

The concept, quantitative literacy, seeks an analog to ordinary literacy, 
crudely measured by whether a person can read and write, to something that 
transcends proficiency in four function arithmetic to a sensitivity to the quan-
titative dimensions of all experience, to an amalgam of skills, knowledge, dis-
positions that can be applied to the quantitative dimensions of experience, and 
to an interpretation of a new reality of the sort portrayed by Crosby’s thesis, 
but beyond the areas he described to all areas of experience. The question is 
what kind of teacher education program, supported by what kind of licensing 
requirements, license tests, national board certificates, etc. would support in-
creased levels of quantitative literacy in the schools. To what course of study 
should the prospective teacher be exposed and how can that be captured in the 
state’s licensing protocols.

Take the following example1 of quantitative literacy as it demonstrates the 
“developing confidence and competence with numbers and measures. It re-
quires understanding of the number system, a repertoire of mathematical tech-
niques, and an inclination and ability to solve quantitative or spatial problems 
in a range of contexts.” It is a lesson given by a teacher whose pupils had been 
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taught previously the standard definitional lesson on odd and even numbers 
and were now exploring patterns in them, such as an even number plus an even 
number is always an even number. One of the pupils, Sean, offered the conjec-
ture that some numbers are both odd and even. 

Of course there are no numbers that are both odd and even, and the teach-
er now has a dilemma that also goes to the heart of the question of how the 
teacher education program would have prepared a teacher for this dilemma, 
what knowledge would be needed, and where could it have been acquired in 
traditional higher education? The larger question of this paper is how the teach-
ing licensing and program accreditation regulations could capture (or frustrate) 
what was needed to encourage the pursuit of quantitative literacy at this junc-
ture in the lesson. 

Should time be taken from the next topic in the state’s prescribed cur-
riculum to review this topic, a topic that would have only one or two items 
on the state’s standardized test? Should the teacher tell Sean he is mistaken 
and correct him by simply restating clearly the odd-even numbers definition 
for him and be done with it? Or, should Sean’s conjecture be pursued to some 
mathematical conclusion.

What kind of teacher education program would support the teacher’s pur-
suit of Sean’s assertion, nonsensical as it might seem? Quantitative literacy 
in fact is partly defined by a confidence to pursue the issue in this situation 
even though the teacher would surely never have come across such an idea in 
any teacher education program of study. It is equally certain, by the way, that 
that these numbers of Sean’s conjecture would never be on any standardized 
test of number understanding. This fact only complicates the links between 
quantitative literacy, teacher education, and the licensing and accreditation 
regulations. 

When Sean was asked, by the teacher how he thought some numbers were 
both odd and even, he replied with the novel observation that six was such an 
odd-even number because two went into it an odd number of times while eight 
was not such a number because two went into it an even number of times. 

The teacher went to the heart of quantitative literacy instruction2 by ask-
ing the class to consider whether Sean’s conjecture had any merit. The class 
worked out the pattern that every other even number was one of these even-odd 
Sean numbers—six was, eight was not, ten was, twelve was not, but fourteen 
was and so forth. Others explored whether adding Sean numbers together gave 
another Sean number or gave non-Sean even numbers. Others noted that add-
ing Sean numbers and non-Sean even numbers always yielded a Sean number. 
The same relationships held for subtraction while other outcomes held for the 
multiplication of odd, Sean and non-Sean even numbers. 
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After further exploration of the properties and patterns of Sean numbers, 
the class was asked whether these odd-even even numbers should be added to 
the list of numbers the class had studied (real, rational, integer, natural, com-
plex, etc,) . How should they even decide whether Sean numbers should be 
added to the mathematics curriculum? Should they vote on it, or is democracy 
a poor mathematical procedure? And if they voted on it, should the decision 
be based on a simple majority, super majority, unanimity, should it be accom-
panied by confidence ratings, and so on? Each of these options demands some 
level of quantitative literacy.

This particular example showcases an unscripted and unplanned teaching 
event, what some might call a teachable moment, but it is more than that as 
it also represents the core of quantitative literacy—a confidence to tackle an 
uncharted quantitative matter, serviceable knowledge of mathematical proce-
dure and knowledge, logical thought and problem-solving, an extension of the 
quantitative into the political and social, and so forth. 

One of the problems with the assessment of quantitative literacy in these 
contexts is that standardized tests, favored by policy-makers who would hold 
teacher’s accountable for their teaching, are quite distant from what goes on 
the class and are restricted to what was hoped went on in the class and what 
lends itself to easy measurement. A second problem is that the public really 
learns more about what did not go on in the school than what did, because 
the lower the test scores, the less we actually know about what went on in 
the classroom. The test would not reveal whether the teacher taught what was 
on the test poorly, or whether the teacher taught something else, like Sean’s 
conjecture very well. A third problem is that the published standards, like the 
standards for numeracy, for the information that should be covered by the tests 
are usually so vague and abstract that almost nothing is ruled in or out of the 
curriculum (see Raths, 1999; Ohanian, 1999 & 2000). 

There are at least two competing views in the nation, today and historical-
ly, about what teachers need to know and how they should be prepared. More 
about each is discussed later, but both views hold that teachers, regardless of 
what else they know, must know the subject matters they hope to teach their 
pupils. The academic major, the usual remedy, can be shown, however, to be an 
inadequate preparation in the subject matter the prospective teacher will teach. 
Mathematics majors, for example, are no better than non-math majors in cre-
ating real world examples of the division of one fraction by another3. By and 
large, the academic major does not induce in students the kind of penetrating 
understanding necessary to pursue Sean’s conjecture or other novel notions in 
quantitative literacy. Efforts to reform the academic major have not abandoned 
the concept of the academic major itself, but rather have tried to make the 
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academic major more effective, especially for teachers, who seek to acquire 
a special kind of integrative subject-matter knowledge that would undergird 
complex areas like quantitative literacy. Proposed solutions have centered on 
new majors, interdisciplinary majors, and new types of courses within existing 
majors.

The case of the appropriate course of study for the elementary school, or 
social studies, or quantitative literacy teacher across the grades is particularly 
instructive because it illustrates the knotty problems that arise when teachers 
must acquire a wider range of knowledge than the typical academic major cov-
ers. In the case of the elementary school teacher it is difficult to see how the 
prospective elementary teachers would become well-grounded in mathematics, 
literature, writing, history, geography, the natural and social sciences, the fine 
arts, language—all subjects that are taught in grade school classroom. At the 
secondary level the matter is only a little less complicated for social studies or 
general science, which are informed by several distinct university subjects or 
majors, each of which is a full university course of study in its own right. The 
most promising preparation for quantitative literacy, an even wider domain 
than social studies or general science, is likely to be informed by proposals to 
solve the problem of the appropriate academic major for the elementary teach-
er. Six options are promising (see Murray, 1991 for an expanded account).

1. Interdisciplinary major. This option is a collection of reworked minors in 
the areas of the school curriculum: mathematics, foreign language, history and 
social science, English, natural science, and fine arts. Apart from the fact that 
each minor would be responsive to the unique requirements of the elementary 
school teacher, the interdisciplinary minor option is fairly conservative and 
administratively feasible. It is an honest approach insofar as each major area 
of the elementary school curriculum is addressed. A similar approach can 
be imagined for the teacher who is sensitive to quantitative literacy as the 
opportunities for this extension occur in each minor.

2. Philosophy of subject matter. In this approach the philosophy of each 
subject matter (e.g., philosophy of science, mathematics, etc.) is taken up, 
and essential and fundamental aspects of the structure of subject matter are 
covered. Teachers learn, for example, that there are no facts apart from theories 
or that “true” theories are not those that were proved, but only those that have 
failed to be disproved. Similarly, social studies education learn to view the 
history curriculum not so much as a chronology, or as the true view of the past, 
but as one of several possible stories of the past that could be constructed to 
make sense of the same historical events. Teachers learn of the similarities in 
the grammar and syntax of mathematics and language, and so on.
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This approach is related to the so-called structure of the disciplines ap-
proach to curriculum reform that followed the Sputnik educational crisis some 
forty years ago. The underlying coherent principles or structures that hold aca-
demic disciplines together are the subject of the courses themselves in this ap-
proach. The separate natural sciences, for example, can be organized by the 
principle of evolution (evolution of species, matter, solar systems, societies 
and cultures, sub-atomic particles, chemical reactions, etc.). Or they can be or-
ganized by the principle of orders of magnitude (e.g., the powers of 10 device 
of relating sub-atomic structure, biochemistry, and celestial systems as well as 
the design constraints of other physical and animate structures that stem from 
their size alone). Whatever it is that makes a certain kind of study, numeracy, 
and not some other kind of study, is the subject of this approach to improving 
the teacher’s capacity for teaching quantitative literacy.  

3. Text approach or “great books” major. This approach entails an unusual 
course of study that contains a close reading of seminal texts, or founding 
texts, in each area (the “great books”) coupled with an examination of school 
textbooks for the assumptions they make about the discipline in question. The 
logic of this proposal, like the philosophy of the disciplines approach, is that 
the core structure of the discipline is addressed directly, and the “forest for 
the trees” problem that plagues most university study is minimized. The logic 
has a pedagogical dimension as well, because the student is introduced to the 
discipline in the way that approximates how world was first introduced to it.

The six topics (pattern, dimension, uncertainty, shape, and change) taken 
up by Steen (1990) are reasonable candidates for the numeracy “great books” 
topics along with the traditional mathematics notions, like number. 

4. Genetic epistemology. This option entails the study of the developmental 
psychological literature from the perspective of the development of the 
concepts that make up the curriculum. In this approach the prospective teacher 
learns the relevant developmental constraints upon the pupil’s acquisition of 
the curriculum and lays out, as an unavoidable part of the discussion, the nature 
of the subject itself. The story of how the young child develops the notion 
of number, for example, is valuable in its own right, but also reveals salient 
portions of number theory, the arithmetical algorithms, and other aspects of 
mathematics. Similarly, the account of the child’s moral development reveals 
the principal issues in moral philosophy and political theory. The scientific 
account of how children form groups and gangs, establish rules for games, 
assign blame and praise, identify enemies, punish transgressions, acquiesce 
and conform to other’s wishes and requirements, advance their position, and so 
forth are instructive for the counterparts of these and other issues in history and 
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political and social science. Thus, the prospective teacher acquires important 
knowledge about both the student’s mind and the content of the discipline they 
hope to teach.

5. The cognitive psychology major. In this option the prospective teacher 
would study a reformed major in cognitive psychology in which the working 
of the mind in various domains becomes the specialization. The subject matter 
content would be picked up through the consideration of how the mind operates 
mathematically, aesthetically, historically and so forth. Like the philosophy of 
the disciplines or text approaches, this approach would provide a structure for 
the reformed minors in each subject area. Each area would be approached from 
the perspective of how we think about and know the content in question. The 
approach fits well with the current recognition in cognitive psychology that 
thinking is domain specific. 

While our notions of number, transitivity, class inclusion, necessity, prob-
ability, and so forth are each objects of study in cognitive psychology, the study 
of the concept of time is illustrative. A well-developed notion of time, which 
supports, for example, an understanding of daylight savings time takes about 
eighteen years to acquire.4 The properties of the numbers that designate time, 
like the numbers assigned to years, are not appreciated by elementary school 
children who can be shown not to grasp order of these numbers or that the in-
tervals between them are equal. A young child will argue that the taller of two 
trees planted at the same moment is older, that the corroded coin of two minted 
in the same year is older, and so on. Older children will argue that the clock 
actually runs slower and faster at certain times of the day and year. The point is 
that immediate time, let alone historical time, is a fragile concept for the child 
and the young adolescent. It cannot be merely assumed by the teacher that the 
order and intervals between dates, for example, have anything like the meaning 
they may have for the teacher. 

6. The pedagogical content knowledge minor. This approach addresses the 
fact that teachers inevitably transform what they know into a teachable subject. 
They give the subject a new structure and meaning, one that is appropriate 
to their students’ level of understanding. These structures can be studied and 
codified. Since this reformulation of the discipline is inevitable in teaching, 
one might as well address it directly and, as in the other approaches, use it as 
a way to structure and teach the academic disciplines. In teaching Huckleberry 
Finn, for example, the teacher inevitably interprets the book as a story of race 
relations, or generation gaps, or an historical period, or latent homosexuality 
on the frontier, or whatever. The academic major would explicitly address 
these pedagogical alternatives. As another example, many science teachers 
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attempt to clarify the nature of electric current by comparing it to the behavior 
of water currents in various sized pipes, and so forth. Is this a good way to 
think about electricity, particularly alternating current? How would one know? 
The answer to the question is not to be found in physics or in education, but in 
a qualitatively different kind of knowledge that will come from conversations 
between disciplinarians and pedagogues and one that builds upon genetic 
epistemology and cognitive science. 

In the earlier example of the division of fractions (1¾ by the fraction ½), 
once the division by 2 error is cleaned up, are the following representations of 
the mathematics pedagogically equivalent and equally commendable—How 
many half slices are there in 1¾ pizza pies? How many 50 cent tickets can be 
bought for $1.75? How many half pint cans of oil are needed to exactly fill of 
1 ¾ pint engine? How many half yard ruffles are needed to cover the bottom 
of a dress of 1¾ yard’s circumference? How could the equivalence and merit 
be determined?

This knowledge—the knowledge of what is a telling example, a good 
analogy, a provocative question, or a compelling theme—is a proper object of 
study and could yield a deep and generative understanding of the disciplines 
of quantitative literacy. To have multiple ways of representing a subject mat-
ter, to have more than one example or metaphor, to have more than one mode 
of explanation requires a high order and demanding form of subject matter 
understanding. 

Once subject matter knowledge is in hand, there are still a number of ob-
stacles to increasing the levels of quantitative literacy in the schools owing to 
tensions in the policy practices surrounding teacher education and licensure. 
Those most interested in increasing quantitative literacy in schools may them-
selves be divided on the degree to which they subscribe the adequacy or suf-
ficiency of relying on naïve teaching to accomplish the task or the degree to 
which they would rely on the professional study and practice of teaching. 

The Alternative of Reliance on Naïve Teaching
Nearly every reform report calls for an increase in the teacher’s subject matter 
preparation at the expense of professional teacher education courses on the 
view that teaching is a naturally occurring human behavior, a wholly natural 
act that is an enduring and universal feature5 of the repertoire of human behav-
iors. Humans are, in other words, a teaching species, a species whose young 
cannot, and do not, survive unless they are taught, invariably by persons with 
no formal schooling in teaching or in teacher education. Ashley and Tomasello 
(1998) found evidence of teaching in children as young as three years old, and 
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Strauss, Ziv, and Stein (2002) found that children’s style of teaching a new 
board game or building something changed from demonstration and modeling 
at 3–4 years to predominately verbal explaining at five and six years. Seven 
year olds can adapt their teaching on occasion to their perception of their pu-
pil’s proficiency and knowledge. They also introduce the new teaching strategy 
of asking the learners if they understood, and they then adapt their teaching to 
the learners’ mistakes. Children’s pedagogy is also influenced by schooling 
itself. Maynard (2004) found that older Mayan children (6–11 years), who 
had been to school, were also able to adopt “school-like” teaching with their 
younger siblings (didactic teaching at a distance) in place of indigenous teach-
ing practices used in families for cooking and weaving (close-up interactive 
demonstrations).

J. M. Stephens (1967) catalogued the features of naturally occurring teach-
ing in his theory of spontaneous schooling. His argument was that schooling, a 
feature of all known anthropological groups,6 was dependent on a set of natural 
human tendencies that some persons had in greater degrees than others. Those 
who had these tendencies in generous proportions would be seen, whether they 
intended to teach or not, as teachers by the members of their communities. 
Teaching and learning would take place naturally, spontaneously, non-delib-
eratively, and not necessarily with any particular motive or intention to benefit 
the pupil. They would occur merely because the tendencies, which fundamen-
tally serve only the teacher’s needs, led incidentally and inevitably to learn-
ing in those persons in the teacher’s company. Teaching, in other words, was 
natural and spontaneous; it occurred whenever a person with these tendencies 
was with any other person for a protracted period, and it occurred to satisfy 
some need of the teacher, not some need of the student. It is not important that 
Stephen’s speculations on the specific character of the natural or spontaneous 
tendencies are correct in every detail, but only that there are natural teaching 
abilities and that these seem to be adequate to account for most of the features 
of contemporary teaching and schooling. 

The natural teaching view is also reinforced by the fact that many effective 
private school teachers have not taken education courses, nor have professors, 
who were trained only to research, not teach, their subjects (Judge, Lemosse, 
Paine, & Sedlak, 1994) and seemingly meet their teaching responsibilities sat-
isfactorily without the benefit of engaging the content of education courses.

Some policy-makers raise the related question: Even if formal teacher 
education can refine and improve natural teaching somewhat, can the nation’s 
needs for teachers still be met, less expensively and adequately, by the natural 
teaching techniques and styles we all seem to possess coupled with study in an 
appropriate academic major? 
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An Alternative to Naïve Teaching: Reliance on Pedagogical 
Education 
The theory of spontaneous schooling, and the view of teaching that is based on 
it, have a number of problematical consequences for contemporary schooling 
because schooling now takes place on larger scales than that found in families 
and other anthropological groups, and because schooling increasingly takes 
place in circumstances where the teacher and the pupils have less and less in 
common. As a result, reliance on the theory of natural teaching can be expected 
to lead to serious pedagogical mistakes for both weak and superior students. 
Quite apart from the matter of scale and the degree of similarity between the 
teacher and the pupil, the theory promotes a direct mode of instruction that is 
unduly limiting in terms of modern views of cognition and cognitive develop-
ment that support advances in quantitative literacy. Finally, the theory provides 
insufficient guidance for the solution of difficult and novel problems in school-
ing that go beyond the natural teacher’s exclusive reliance on “showing and 
telling,” the core of the natural style of teaching found in children and adults.

Low Expectations. When the teacher and the pupil are not alike and when 
the teacher may have lower expectations for the different pupil, the natural 
tendencies lead to very unfortunate consequences (Brophy & Good, 1986; 
Evertson, Hawley, & Zlotnick, 1985). When the teacher and the pupil have 
dissimilar backgrounds, we can expect the natural teaching mechanisms that 
support familial instruction will not operate to benefit the student. 

Natural teaching leads to a predictable number of pedagogical mistakes 
that novices, and regrettably some licensed teachers, make unless they also 
have had the opportunity to learn and practice extensively some counterin-
tuitive and unnatural teaching techniques. For example, it is certain that the 
natural teacher, well-meaning and well-read with good college grades, will 
still make the following pedagogical mistakes with their pupils for whom they 
have low expectations, regardless of how benignly they came to have these 
expectations. They will treat these pupils not as individuals but as a group, 
seat them further away and outside the classroom zone of frequent teacher-
pupil interaction, look at them less, ask them low-level questions, call on them 
less often, give them less time to respond, give them fewer hints when they 
are called upon, and give them less praise and more blame than other pupils. 
And the natural teachers will do all this out of a mistaken sense of kindness 
that is seemingly oblivious to the pedagogical harm their undisciplined actions 
have caused their pupils (Hawley & Rosenholtz, 1984; Murray, 1996). 

This untrained, natural, and kind person, believing the pupil does not know 
very much, will not want to embarrass the pupil by calling on the pupil often, 
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will ask appropriately easy questions when the pupil is called upon, will give 
fewer hints and less time when the pupil fails to respond as it would be unkind 
to prolong the pupil’s embarrassment and so on. The educated teacher, like all 
professionals, and in contrast with the spontaneous or natural teacher, must 
discipline many of his or her kinder instincts and implement an equitable and 
disciplined professional approach to bring about high levels of achievement 
from those pupils for whom the teacher would otherwise have low expecta-
tions (Oakes, 1985). These professional actions are frequently counterintuitive 
and as a result require extensive practice so that they can be performed by 
second nature. 

Higher-order Forms of Learning Needed for Quantitative Literacy. Kantor 
& Lowe (2004) argue persuasively that historically the schools, with a few 
exceptions that proved the rule, were inattentive to quality education and higher 
order subject matter understanding of the sort expected in quantitative literacy. 
Teaching was largely showing and telling coupled with rapid fire teacher 
questions and student recitation and memorization, which while useful for the 
rote learning of some quantitative facts, limited higher level achievement and 
was a hallmark of the natural teaching regime. 

A further limitation of the natural teaching regime, apart from the harm 
caused to weaker pupils over time, is that it does not take the superior pupil 
much beyond the kind of information that can be told and demonstrated and 
conforms to the stimulus-response and imitative forms of learning. While such 
declarative knowledge is important, the forms of quantitative literacy that are 
constructed by the pupil, not merely transmitted to the pupil, are increasingly 
seen as key to the student’s performance at the advanced levels of the disci-
plines (Murray, 1992; Ogle, Alsalam, & Rogers, 1991). A pupil can be told and 
shown, for example, that A is greater than B, and that B is also greater than 
C, but an essential ingredient of quantitative reasoning, the knowledge that 
A must be greater than C, and that one could know that without ever looking 
directly at A and C, cannot be simply given to the pupil. Not only is A truly 
greater than C, but more than that, it has to be greater. The quantitative litera-
cy notion of necessity has its origins elsewhere and outside the definitions in 
mathematics. Showing and telling have not been found, except in very unusual 
circumstances, to be effective means of “teaching” necessity (Beilin, 1971; 
Murray, 1978 & 1990; Smith, 1993). It is one thing to know that a statement 
is true, but quite another to know that it must be true. The origins of necessity, 
and other pivotal concepts, like irony or justice, seem to lie in dialectical in-
struction, which demands intellectual action on the part of the teacher and the 
student. While more demanding on the student, dialectic or maieutic teaching, 
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is a less direct and more subtle form of instruction than that supported by the 
natural “show and tell” teaching tendencies.

The Naïve Theory of Mind. Along with the natural teaching techniques there 
often comes a naive and serviceable, but limited, theory of the human mind 
(Heider, 1958; Baldwin, 1980). The pupil’s school performance in the naive 
or common sense theory is tied to four common place factors—ability, effort, 
task difficulty, and luck. With these four factors, the natural teacher can explain 
completely the pupil’s success or failure on school tasks by attributing the 
level of the pupil’s performance to his/her ability or effort, or to the difficulty 
of the school task, or to plain luck. The problem with naive theory, apart from 
the circularity in the four factors, is that more sophisticated theories have been 
developed in which it can be shown that ability, to take only one example, is 
not fixed or stable, and that it varies from moment to moment interactively with 
many other mental factors, not just the few in the naive theory (Baldwin, 1980; 
Murray, 1991). Naive theories, for example, see forgetting as the inevitable 
decay of stored knowledge, when the educated view is that forgetting is an 
active thinking process of interference and reorganization (Rose, 1993). 
Similarly misconceptions in science and mathematics are seen as the result of 
misinformation or forgetting when the educated view is that they stem from the 
lively interaction of the earlier, more primitive and well-established conceptual 
frameworks with later information (an imperfect balance between assimilation 
and accommodation in the Genevan sense (Baldwin, 1980)). 

Naïve Pedagogy. Natural teaching is essentially showing and telling (see 
Olson and Bruner (1996) for an account of folk pedagogy). Naïve pedagogy is 
based upon a transmission of intact packets of information model of teaching. 
Strauss and Shilony (1994) interviewed experienced and novice science and 
humanities teachers about how they would teach a topic of their choosing 
to children of various ages (7-17 years). Both novice and regrettably many 
experienced teachers in each discipline conceptualized teaching only as the 
flow of information from their heads to their pupils’ heads, acknowledging their 
own role was only to devise manageable and interesting ways of entry into the 
student’s mind so the information could be stored and anchored appropriately. 
The student is passive, a receptacle waiting to be filled, and if the information 
fails to flow to its destination, the receptacle was taken to be too small and/or 
the student was inattentive. 

Astington and Pelletier (1996) catalogued the following tenets of naïve 
pedagogy: (1) children are born with abilities and capacities that unfold linear-
ly in time, (2) instructional sequences should match developmental sequences, 
(2) learning occurs sequentially within a hierarchy of skills, and (3) student 
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errors are attributable to incomplete learning or inattention. When the pupil 
needs to do something, the teacher need only demonstrate or model it, and 
when the pupil needs to learn something, the teacher need only tell the pupil 
what they need to know. 

On the whole, these folk or naïve pedagogical techniques and beliefs frus-
trate the modern pedagogies based on dialectic, discovery, invention and col-
laboration that would be tuned to enhancing quantitative literacy. They are also 
at variance with some contemporary research findings: developmental path-
ways, for example, are rarely linear and often show fits and starts, oscillations, 
and even reversals, particularly when performance is at an optimal level or 
when a new skill is being developed (Fischer & Bidell, 1998). 

These naive views of how the mind works coupled with equally naive 
views about the nature of the academic subject matters as received and objec-
tive truth further limit the benefits that can be expected from nonprofessional 
or natural teaching (see Amsler and Stotko (1996), for examples of the possible 
and legitimate variations in what constitutes correct subject matter knowledge). 
The naive view of subject matter also shows itself principally in the area of as-
sessment of the student’s understanding of a subject matter. 

Classroom Assessment. The natural or naïve teacher’s evaluation of the 
pupil’s correct and incorrect responses provides a telling and targeted arena 
for distinguishing naive and educated teachers. A student’s reasoning may 
look illogical to a naive teacher, while the educated teacher will see that the 
student’s reasoning is intact, but has operated on different premises from those 
of the set problem. The naive teacher will be distressed when a pupil who had 
pluralized mouse correctly suddenly pluralizes it as mouses, while the educated 
teacher will see the new plural, not as an unfortunate regression, but as a 
positive sign of cognitive advancement in which the pupil is exhibiting a newly 
developed appreciation of a linguistic rule that is merely over-generalized in 
this instance. 

Other decrements in performance may also indicate educational progress; 
some six year old pupils not only maintain incorrectly that the longer row of 
two rows of five beans has more beans, but also maintain that the longer row 
must have more beans and would always have more beans. These errors occur 
even after the pupil has just counted the equal number of beans in each row. 
It happens that the error, “there must be more beans,” which seems the more 
serious error, is indicative of more developed reasoning than the error, “there 
are more beans” (Murray & Zhang, 2005). Naturally, it is very difficult for the 
naive or natural teacher to accept any error or poor performance as a marker 
of progress, yet the failure to see some errors as markers of progress is another 
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serious pedagogical mistake that stems from the naive theory of teaching and 
learning (see Bruner, 1961 on creative errors). 

The student’s superior performance may also be misinterpreted by the 
naïve teacher (see Strauss & Stavey, 1982 for examples where correct per-
formance actually rests on immature and incorrect reasoning). Murray (1990) 
found that young children’s success on a developmentally advanced quantita-
tive reasoning task (the classic wine and water mixture problem) was, despite 
the appearances, not an indication of the same level of cognitive development 
as older children’s success on the same task. The adolescents seemingly and 
inappropriately coded the problem as a probability problem and reasoned to an 
indeterminate conclusion when in fact outcome is a matter of necessity—there 
must be as much wine in the water in one glass as water in the wine of the 
other glass. 

If a child arrives at the correct answer to a multiplication problem through 
serial addition, how would the naïve teacher score the response—as superior 
or inferior to the response of a child who arrives at an incorrect answer through 
multiplication? Do college students, who correctly calculate the mean, median, 
and mode, operate at different standards of sophistication if their reasoning is 
based on a calculation algorithm, a mechanical model of balance, an algebraic 
deduction, or a special case in the calculus? Upon what theory, and by what 
means, would the naïve teacher determine whether some solutions are more 
sophisticated, elegant, significant, and so forth, than other solutions. By what 
criteria would the teacher even see his/her teaching as successful and/or high 
quality (see Fenstermacher & Richardson, 2005 on these distinctions)? 

The naïve or educated teacher’s mistakes in subject matter knowledge and 
its assessment are a problem under any view of teacher employment. Additional 
study in the subject matter would seem the obvious remedy, and nearly every 
reform initiative in teacher education, as noted earlier, recommends additional 
and deeper subject matter preparation. The exact nature of the study, however, 
has been shown to be complex (Wilson, Floden, & Ferrini-Mundy, 2001; Rice, 
2003; Floden & Meniketti, 2005). Generally more preparation in the subject, 
particularly mathematics, is positively related the state’s assessment of stu-
dent learning, but there are inconsistencies in which additional subject matter 
preparation sometimes weakens student learning (Rice, 2003). The state as-
sessments are, of course, about relatively narrow and easily scored concepts of 
quantitative literacy.

The Problem of Abbreviated Study. The research on the efficacy of 
pedagogical courses is weaker than that for subject matter courses, but also 
shows some positive association with student teaching (Rice, 2003). It is 
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doubtful that a sufficient level of pedagogical training can be reached in a short 
period. For example, on a simple reading of Skinner, as might be found in a 
survey course in education, prospective teachers could believe that positive 
reinforcement (or reward) is an effective and preferred way to increase the 
likelihood of desirable pupil behavior. Without an awareness of the important 
exceptions and qualifications in which rewards actually weaken a response (the 
over-justification phenomenon), teachers will make mistakes by implementing 
procedures that run counter to their intentions (Cameron & Pierce, 1994)7. 

Similarly, upon a quick reading, the prospective teacher could come to 
believe that student grades should be normally distributed or that reliability 
is a property of a test rather than a property of those who took the test. These 
professional lessons cannot be easily abridged or rushed because many educa-
tional innovations are counterintuitive and subtly tied to hidden factors. 

For example, it makes a difference whether addition problems, like 8+5=_
_, are presented horizontally or vertically. While a seven-year-old pupil, to take 
another example, may understand that the amount of clay in a ball would be 
unaffected if the ball were flattened into a pancake, she would more than likely 
believe incorrectly that the same pancake would weigh more and take up less 
space, despite the fact that the she had claimed the ball and pancake have the 
same amount of clay. In fact it is only in adolescence that she would understand 
that the volume of the ball and pancake were the same. Furthermore, it is now 
acknowledged that many research findings are inherently provisional and must 
be qualified by context and the cohort or generation of pupils who participated 
in the study, as different results are obtained from different cohorts and con-
texts on such basic questions as whether intellectual performance decreases 
after a certain age. Thus, having studied the research literature at one time is 
not a guarantee that the results can be applied at a later time with regard to 
such nagging and recurring issues as social promotion, skipping grades, abil-
ity grouping, optimal class size, delayed instruction, and so forth. Current and 
deeper study is required throughout the teaching career.

The Problem of Insufficient Time. Sudden or effortless changes in behavior 
are taken by developmental psychologists as a sign that the change was not 
fundamental, but rather a temporary change, caused by a peripheral mechanism 
(e.g., fatigue, inattention, misperception, etc.), and not authentic. Protracted 
and extended practice and experience is needed to overcome the acquisitions 
of a prior stage of development or of the naïve or natural teaching regime, 
which seems to be deeply rooted in behavior.

Smith (1989) has shown that highly motivated, knowledgeable, and expe-
rienced teachers were still unsure and shaky after ten months of practice in their 
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efforts to implement a conceptual change science teaching technique, even 
though they practiced the new technique extensively under ideal teacher edu-
cation conditions (extended coaching one on one). Such protracted experience 
is rarely afforded in the traditional teacher education program. Despite having 
practiced the technique in a variety of settings, having video and stimulated 
recall analysis of their teaching performance, and having personal feedback 
of their efforts, the teachers regressed to their earlier teaching style whenever 
the lesson took an unusual and unexpected turn (Smith & Neale, 1990). Their 
regression to show and tell sometimes undermined the entire point of quantita-
tive reasoning itself, because the teachers would deny or ignore an unexpected 
outcome in a demonstration in favor of the outcome that was supposed to have 
happened. In a light and shadow lesson, when a single shadow was expected 
and predicted, but a double shadow appeared, the teacher would deny it or 
ignore it and continue with the demonstration as if the single predicted and ex-
pected shadow had appeared, all in opposition to the new teaching technique. 

The classic defense against this kind of regression under stress to the more 
primitive and older strategies is over-learning or practice well-beyond what 
is needed to simply learn the new skill or approach. Regrettably, few teacher 
education programs can make the necessary provisions for over-learning.

Olson and Bruner (1996) conclude that the shift from the simplest pedago-
gies of natural teaching to the more sophisticated ones available in scholarship 
entails a focus on what the student, not the teacher can do, on what the student 
thinks, on the student’s view of teaching itself, and on knowledge as an emer-
gent event in the dialectic between the teacher and the student. 

Weak Protocols for Quality Assurance in Teaching. Ironically, the calibration 
of teacher certification and more ambitious goals for teachers of quantitative 
literacy is held back by the very fact that teaching has all the attributes of 
the other professions—accreditation, professional associations, standardized 
tests, licenses and credentials, advanced degrees, and so forth. While there is 
some fragile evidence for the efficacy of the license in the teaching field and 
advanced degrees (Rice, 2003), none of these requirements, all demanding in 
their appearance, has much credibility within or outside the profession as each 
is routinely waived when there are shortages of otherwise qualified persons 
for the public schools. In the case of the private schools, many states typically 
set and require no standards at all, a practice that only reinforces the lack of 
standing the current standards have. 

To take one example of the low regard in which these bureaucratic standards 
are held, the National Board for Professional Teaching Standards (NBPTS), 
departing from the practice of other professional national boards, elected not to 
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require a degree in teacher education, a state teaching license, or study at an ac-
credited institution for those permitted to sit for its certification examinations. 
National Board certification, itself, is not even required for advancement in the 
field or promotion to higher levels of professional responsibility. 

Since 1951 all states must give their permission (a license) for a person to 
teach in a public school, and a few also require the license for private school 
teaching. Historically and continuing to current time, three factors have been 
relied on in granting this permission—(1) an assessment of the prospective 
teacher’s character, (2) the prospective teacher’s tested knowledge (particu-
larly of the teaching subject), and/or (3) the prospective teacher’s teaching 
skill as attested to by the completion of a higher education program of study 
in pedagogy. 

The state’s granting of formal permission to teach is meant to be based on 
indicators that permit an overall prediction that a particular candidate will per-
form safely and satisfactorily in the complex situation of teaching. Upon which 
of the three factors the various states elect to award their license depends on 
whether they see teaching as a profession based exclusively upon specialized 
university-level study, or whether they see teaching as little more than a civil 
servant’s line of work that can be taken up by nearly any well-meaning person 
who has mastered a subject matter. 

One issue, both historically and at present, centers on these competing 
views of teaching—how a person learns to teach, who should be entitled to 
teach, and more importantly who should be prohibited from teaching, whether 
teaching is inherently moral or technical, an art or a science, and so forth. 
Recently, policy-makers have wanted also to know whether any of these fac-
tors influence the performance of the prospective teacher’s students on the stan-
dards-based assessments the state makes of pupil and student achievement. No 
matter the basis of the license award, the students of licensed teachers generally 
perform slightly higher on state tests than the students of non-licensed teachers. 

A second issue centers on who has the authority and expertise to grant the 
license. While it is essentially a settled matter today that the states have this 
authority, it was not always a settled matter because local communities, the 
profession, individuals, and the colleges have battled for the right to make the 
determination, and today some argue that licensure should be granted only at 
the national level in accordance with national standards.

From colonial times onward, parents, school boards, personnel directors, 
state superintendents, policy-makers and their counterparts have sought an an-
swer to the question of what will predict who, among all the available candi-
dates for a teaching position, is likely to succeed and perhaps more urgently 
who is likely to fail in the position. 
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Regrettably, all that is really available to them in their quest of a way to 
determine who should be permitted to teach is a set of flawed measures. A col-
lection of flawed and incomplete indicators can be useful and one of the most 
correlated measures, IQ, is itself little more than a systematic combination of 
other limited measures, like memory span, word meaning and fluency, spatial 
relations, manual dexterity, classification, numerical reasoning, reaction time, 
common knowledge, which by themselves have little predictive validity. Each 
is weak and flawed in its power to account for very much of human behavior, 
although the compilation of these separate component measures is significantly 
related to nearly all aspects of human intellectual accomplishment. 

Unfortunately, the historical and current desire for a simple, single, and 
inexpensive measure of teaching potential yields risky answers that would be 
as silly as using spatial relations skill or reaction time as the sole indicator of 
intelligence. 

Historically, the prevailing18th century tests of good character (basically 
interviews with local clergy) were supplanted by local tests of subject matter 
and pedagogy in the 19th century, and when these proved to be biased, invalid, 
and easily corrupted, they in turn were replaced by diplomas and degrees from 
programs of study in the newly emerging normal schools in the late 19th and 
early 20th centuries. The 1980’s saw a resurgence of tests of basic skills and 
subject matter coupled with the academic degree, but some, like the American 
Board for the Certification of Teacher Excellence (ABCTE), promote a stand 
alone subject matter test as a sufficient basis for gauging teacher competence 
and potential. 

The recurring dissatisfaction with the nation’s schools, prompts non-re-
flective policy-makers and some of the reform-minded, to simply reject the 
indicator of the moment—the education degree on one occasion is replaced 
or supplemented with a standardized test because schools of education, even 
accredited ones, give degrees to some academically weak students. Tests of 
uncertain psychometric merit are then relied upon, and historically were re-
lied on exclusively until the 1920’s, when it was clear then as now that the 
tests’ validity coefficients are low or absent. Direct classroom observation of a 
sample of the candidate’s teaching, while closer to the predictive task at hand, 
proves unduly burdensome when properly done. Because the number of obser-
vations needed to reach acceptable reliability levels is nearly identical with the 
entire first year teaching assignment itself, predictive observational measures 
of teaching are essentially redundant with the very behavior they were put in 
place to predict. 

Currently, there are about eight potential ingredients in the nation’s system 
of quality assurance, all admittedly insufficient by themselves, but collectively 
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they permit tolerable levels of accurate prediction of teacher success, each one 
speaking to a different aspect of teacher quality. These eight interrelated ingre-
dients are: the degree in teacher education, accreditation8, state program ap-
proval, the teaching license, national board certification, tenure, license tests, 
and the achievement of the teacher’s pupils itself. While some of these eight 
indicators or measures may by themselves lead to a correct prediction of ef-
fective teaching, each is subject to known distortions that may lead to an inac-
curate prediction; that is, they may indicate that a person can teach well or at 
an acceptable level, when in fact the person will prove to be inept with some 
pupils in some challenging circumstances. 

In matters of importance, where mistakes have significant societal costs, 
prudence and common sense commend systems of checks and balances sup-
ported by multiple measures. A sound prediction that a prospective teacher will 
succeed might rest on the person’s completion of a state approved degree pro-
gram from an accredited institution coupled with performance on standardized 
tests of subject matter and pedagogy coupled with demonstrations of teaching 
that incorporated measures of pupil performance. The prediction is enhanced 
through interview techniques that seek to establish that prospective teacher 
possesses attitudinal characteristics, values, beliefs, and expectations that align 
with those possessed by veteran successful teachers.

The logic of convergence as a strategy for building a credible prediction 
out of individually weak and flawed measures requires that the measures con-
tributing to the prediction be multiple and independent. Efforts that conflate 
measures or have one substitute for the other introduce unwarranted risk. The 
initial driver’s license, for example, requires a road test in which the candidate 
demonstrates proficiency in the task itself. There would be considerable risk if 
the road test were waived solely on the basis of good grades in accredited or 
approved driver’s education courses, or high marks on a written test of knowl-
edge about driving. Rather, the state seeks to reduce the risk of granting a li-
cense to substandard drivers by requiring independent and multiple sources of 
evidence about the candidate’s driving (a sample of driving behavior, a written 
test of driving knowledge, and driver’s education or experience). 

Very nearly the opposite approach has evolved for teaching. First, the li-
cense is often not required for certain teaching assignments – for private school 
teachers, or tutors, or others who work outside the public schools. It is waived 
now for about 5% of the public school workforce. It would be unthinkable 
to waive the drivers’ licenses or require it only for those who drive publicly 
owned vehicles or require medical licenses only for those physicians who work 
in public hospitals and clinics. Program approval and accreditation are fre-
quently collapsed into one assessment and in some scenarios the license test 
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may substitute for all other indicators together, thereby losing all the power of 
convergence.

The effort to increase the levels of quantitative literacy in the schools will 
surely fail unless each of these elements in the quality assurance system is ad-
dressed and coordinated. Change in education, historically, can come through 
the manipulation of one or two of these quality assurance devices, but these 
changes are typically short-lived and disappointing. Lasting change begins 
with a clear conception of the measurable features of numeracy, the establish-
ment of a course of study along the lines of the options for a new academic 
major described earlier, the specifications of new requirements for the teaching 
license, the redesign of license tests, recognition in the accreditation and state 
approval standards, and incorporation in the state’s curriculum assessments. 
Without this clear conception, the policy levers provided by teacher educa-
tion, licensing, credentialing, accreditation are relatively powerless to provide 
a structure that will directly encourage and reward a teacher who has the capac-
ity to pursue Sean’s conjectures.
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Endnotes
1 Based on an episode in Deborah Ball’s teaching as a professor of mathematics educa-
tion in the Michigan State University School of Education who also taught third grade 
mathematics each day in East Lansing. 
2 It requires understanding of the number system, a repertoire of mathematical tech-
niques, and an inclination and ability to solve quantitative or spatial problems in a range 
of contexts
3 Ball, D. (1991) found that not only were mathematics and non-math majors no better 
at finding examples of the division of 1¾ by the fraction ½, but their offered examples 
were often wrong mathematically. They tended to give examples where the division 
was by 2 rather than ½.
4 Prior to this level understanding, adolescents will argue that while setting the clock 
ahead in the spring makes one truly older, the effect is cancelled later when the hour is 
lost, so age is in the end unchanged. 
5 Draper (1976) and Konner (1976) show there are complex limits to universality of 
teaching in anthropological groups. In some cultures children are taught to eat but not 
to sit and to walk and vice versa in other cultures. 
6 Premack & Premack (1996, p. 315) point out that “pedagogy is not an official an-
thropological category: no catalogue lists the pedagogical practices of different groups 
… the anthropology of pedagogy is largely nonexistent; its proper study has yet to 
begin.” 
7 See further comment on the over-justification phenomenon in the Spring, 1996 issue 
of the Review of Educational Research, 66, No. 1, 1–51.
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8 In the 1998 a newly established accreditor, the Teacher Education Accreditation 
Council (TEAC), shifted the basis of accreditation to the evidence that the graduates 
were competent beginning teachers, and the older accreditor, the National Council for 
the Accreditation of Teacher Education (NCATE), followed suite so that accreditation 
is now centered on evidence of the prospective teacher’s understanding and skill. Only 
half the nation’s teacher education programs are accredited. 
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Institutional Audit Questions

One anticipated outcome of the Wingspread conference Quantitative Literacy 
and Its Implications for Teacher Education was a list of questions that could 
help schools and colleges  evaluate their programs in QL and teacher educa-
tion. Questions for this “institutional audit” were solicited from conference 
participants in advance of the conference, and an edited list was distributed and 
discussed at the conference. Questions address both the nature of QL and two 
types of institutions:  schools and school districts where teachers teach, and 
colleges and universities where teachers are prepared. 

The following is this list of institutional audit questions interspersed 
with observations from conference participants offered in reaction to the 
discussions.

General questions:
• What are the basic quantitative requirements for all future teachers?  Is there 

a common core of basic QL that applies to all subjects and all grades, and 
thus to all teachers?

On QL and Social Science . . . 
QL, especially as it concerns informed citizenship, can be cen-
tered in the social sciences or social studies at the post-second-
ary and secondary levels.  If we are concerned for the contextual 
validity and meaning of numerical challenges, why not teach QR 
in those contexts in which it naturally falls rather than in the form 
of problems to which context is appended?  

Relatedly, the reporter advanced the provocative claim that 
mathematics is as important to QR as informational literacy.  In 
the contemporary web-based world, arguably, the greatest QL 
challenge isn’t generating and evaluating numbers mathemati-
cally, it’s finding existing numbers and thinking about presented 
numbers knowledgeably and critically.  

— Neil Lutsky, reporter
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• Is it desirable (or even pos-
sible) to make a clear distinc-
tion between basic quantita-
tive literacy appropriate for 
all teachers and higher order 
thinking that may be more 
appropriate for some grades 
or subjects than for others?

• Is a teacher’s mastery of 
QL adequate preparation for 
teaching quantitative skills 
essential for the life and work 
of students? 

• What proportion of K–12 
teachers believe that some 
form of QL is relevant to their teaching in that it complements rather than 
competes with existing content?

• To what extent do national documents that provide curricular guidelines 
support the role of QL in different subjects?  Can you give examples where 
this is done well (or poorly)?

• Do you know of any exemplary materials suitable for helping teachers learn 
how to prepare students to be quantitatively literate?

• Is there conflict between traditional school mathematics and the mathemat-
ics needed for QR/QL in contemporary society?

• What are the special QL requirements for teachers of mathematics, science 
and social science?

On QL and Teacher Education . . .
From the teacher education perspective, 
experienced teachers are more likely to be 
able to handle the classroom instructional 
and assessment demands of QL instruction 
which will often go beyond single class
periods or even units. 

It is possible that the processes sought 
in QL tasks can be highlighted within a 
“senior level” mathematics course for 
all students, and in particular for those 
not aggressively pursuing the calculus 
sequence.

— Henry S. Kepner, Jr.  
NCTM President-Elect

On Numeracy and Statistics . . . 
I am convinced that numeracy has a rather large overlap with statistics education, 
especially as the latter is being defined and developed for the K–12 mathematics 
curriculum.

A project that would look at constructive and practical ways to combine the 
statistics education goals and the QL education goals, and to embed them into 
teacher education programs, could go a long way toward establishing QL as an in-
tegral part of the school curriculum.  The current academic year (2007–08) would 
be a great time to start, as the NCTM professional development focus of the year is 
“Becoming Certain about Uncertainty: Data Analysis and Probability.”

— Richard Scheaffer
Former President, ASA
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• Is it possible to develop consensus of performance competence in QL ap-
propriate to different educational levels (e.g., high school graduation, col-
lege graduation, teacher preparation)?

Institutional questions:

• Is QL/QR (e.g., the ability to use mathematics in everyday life) included in 
the learning goals for students at your institution? If so, how do you assess 
this goal?

• Does your district or college explicitly recognize QL as an area of pro-
fessional preparation and development for teachers in all subjects and all 
grades? If so, how is this preparation and development carried out?

• Have the distinctions be-
tween mathematics and 
QL/QR been addressed in 
your required studies for 
future teachers? 

K–12 questions:

• What resources (e.g., ex-
perienced staff) does your 
school make available to 
assist teachers seeking to 
expand assignments and 
course modules in QL directions?

• In what ways do your hiring and new-teacher orientation encourage faculty 
in teaching QL and other cross-disciplinary goals (as opposed to seeing 
themselves as responsible only for a particular subject or grade)?

• Do your classroom materials (textbooks and supplements) support QL in 
the curriculum? Does your district provide supplementary materials that 
encourage QL-type problem solving? Are these materials easy for teachers 
to use? Do your teachers use them?

• Many QL problems invite creativity on the part of students, e.g., in ques-
tions they propose, in assumptions they make, or their approach to a solu-
tion. What kind of training experiences do you provide to help teachers who 
are more comfortable with a chalk/talk approach to explore these types of 
problems?

• How do your teachers assess the QL skills of their students?

On Institutional Audits . . .
Experience has shown that when asked (dur-
ing the course of an audit) some faculty may 
not know if the courses that they teach have 
a quantitative component. This seems to be 
the case in statistics where faculty in the past 
have said they ‘don’t know’ if what they are 
teaching has a QL component of not.

— Kenneth C. Carr, reporter 
Reporting on Institutional Audit Panel
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Higher education questions:
• How are your learning goals for future teachers influenced by the need for 

them to teach quantitative literacy?
• Do your continuing education courses for teachers have any QL content?
• Where in your teacher preparation program do prospective teachers learn to 

tackle non-routine tasks that require QL thinking?  (“Non-routine” refers to 
tasks for which nothing closely similar has been taught.)  

• Are such non-routine QL-like tasks routinely included in tests and other 
course assessments?

• Where in your teacher preparation program do prospective teachers learn 
how to teach students to tackle non-routine tasks that require QL thinking?

• How can an undergraduate institution gain commitment from faculty across 
disciplines to take QL seriously as part of most regular liberal arts cours-
es?

• How can teacher preparation programs develop effective opportunities for 
future teachers to purposefully teach for QL outcomes? 

• Do courses for future teachers in education, social sciences and humani-
ties include quantitative reasoning tasks? How are these tasks connected to 
tasks in mathematics or science classes for these same students?

• Where in your curricula do students (especially future teachers) learn to (a) 
use of numbers in argument, (b) visually display quantitative information, 
and (c) write with precision, especially in the use of quantitative expres-
sions? What evidence do you have that your graduates are achieving these 
goals?

On Fractions I …
We need to ensure that students recognize that there are many ways of con-
ceiving of fractions and precisely because fractions (and ratios, decimals, 
and percentages) require shifting view points, they make excellent quantita-
tive literacy (QL) tools.

On Fractions II …
While fractions are critical in cooking, for most real-world applications and 
representations of quantitative evidence in the media, percentages are the 
key.  Representing parts of a whole, comparing values to one another, mea-
suring changes over time, scaling, and computing weighted averages all 
require a strong understanding of percentages.

— Corrine Taylor
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• Do quantitative courses for future teachers include contemporary quantita-
tive issues such as economic indices?

• Do your quantitative courses teach methods and algorithms or reasoning 
and problem solving?  How do you know?

• What steps have been taken to coordinate cross curricular studies that sup-
port habits of mind such as quantitative literacy?

• Are the mathematics and statistics courses required of future teachers dif-
ferent from (a) those required of science and engineering students, or (b) 
those required for general education?  If so, in what ways do they differ?  
How are these differences related to achieving or teaching QL?

• How can we assess QL competence in ways that both signal to students 
what is expected and provide useful formative feedback? 

• Is it possible to add QL to an already over-prescribed context of teacher 
preparation?
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