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Abstract: Mathematical literacy has received increasing attention in many countries over 
the last few years.  This is partly driven by concerns of employers that too 
many students leave school unable to function mathematically at the level 
needed in the modern world of work.  Further, it is increasingly recognised 
that people can only tackle many of the challenges of modern life effectively if 
they are mathematically literate in key areas.  Planning in personal finance, as-
sessment of risk, design in the home or on the computer screen, and critical 
appraisal of the flood of statistical information from advertising, politicians 
and the press – these are just a few of the domains where mathematics is an es-
sential tool in sensible decision making, not just an exotic luxury. Mathemati-
cal literacy, like literacy in language, is empowering. 

1. WHAT DO WE MEAN BY MATHEMATICAL 
LITERACY?   

The term and its variants are used in a variety of ways1 alongside other 
terms with overlapping meanings – quantitative literacy, numeracy, func-
tional mathematics, quantitative reasoning and more, are all used.  Here we 
shall mainly call it mathematical literacy (ML), focussing on the core idea: 

Mathematical literacy is the capacity to make effective use of mathemati-
cal knowledge and understanding in meeting challenges in everyday life. 

In contrast, mathematics in school largely continues the legacy of Euclid, 
Newton, and Euler – a school-based, “scholastic” discipline of major impor-
tance conveying the basic ideas of geometry, algebra, and calculus.  It also 
equips a minority of students well for their chosen specialised professions – 
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in mathematics, physics, and traditional engineering. Valuable as this may 
be, and it is of immense and irreplaceable value, a central goal of schooling 
in the modern age must be to prepare all students for life in an increasingly 
technological society. That is what ML is all about: mathematics acting in 
the daily lives of citizens.  

In this respect, school mathematics does not look so good.  Most adults 
use little of the mathematics they first learned in secondary school in their 
every day lives.  Much of that mathematics could be useful for mathematical 
literacy but the additional modelling skills that would make it so are not cov-
ered in most curricula. 

Here we shall summarise key developments in recent years, including re-
cent thinking in the US, described in Mathematics and Democracy: the case 
for quantitative literacy (Steen, 2002), and the suggestions in the UK Gov-
ernment Tomlinson report (2004) that functional mathematics should be at 
the core of learning for all, with additional specialist mathematics for stu-
dents who want more.  Of particular note is the OECD’s Program for Inter-
national Student Assessment (PISA, n.d.). This is important because it repre-
sents an international consensus on mathematical literacy. The PISA test in-
strument, while its exclusively short items are not “cutting edge”, is a big 
step forward. It complements the narrower view of mathematics embodied in 
the Third International Mathematics and Science Study (TIMSS, n.d.), which 
devotes little serious attention to applications, and none to modelling or 
other non-routine problem solving. In PISA's definition (OECD, 2003, p. 
24): 

Mathematics literacy is an individual’s capacity to identify and under-
stand the role that mathematics plays in the world, to make well-founded 
mathematical judgments and to use and engage with mathematics in 
ways that meet the needs of that individual’s life as a constructive, con-
cerned and reflective citizen 

This broader conception looks at the life circumstances, contexts and 
needs of an individual, and considers the importance of their capacity to en-
gage with and use mathematics in those life contexts. It involves recognising 
mathematical features of phenomena in the world around us, making judg-
ments about those phenomena informed by mathematical understanding, and 
generally using mathematics as a tool for dealing with the phenomena. 

The above definitions, and other variations on them, all convey three im-
portant ideas.  First, ML is much more than arithmetic or basic skills. Sec-
ond, ML requires something quite different from traditional school mathe-
matics.  Third, ML is inseparable from its contexts. In this respect ML is 
more like writing than like algebra, more like speaking than like history. ML 
has no special math content of its own, but finds appropriate content for the 
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context.  Moreover, like writing and speaking, the standard of excellence 
increases with the sophistication and importance of the issue being analyzed.  
Mathematics plays a parallel role in mathematical literacy to that of language 
in literacy2.   

Unlike teachers of language, most mathematics teachers rarely try to link 
mathematics lessons to the everyday lives of their students who, conse-
quently, don't expect it.  Making ML a reality in most classrooms will need a 
revised ‘classroom contract’3, supported by new and well-engineered class-
room materials and professional development support – a major challenge 
for design and development. 

In the rest of this section, we shall: 
• outline the characteristics of a ‘good ML problem’; 
• discuss what mathematical literacy looks like as it develops; 
• touch on some areas of controversy. 

Then, in the next section, we shall discuss how teachers and curricula 
may develop ML in the classroom as part, along with other modelling and 
applications, of the learning of other mathematical competencies. 

2. WHAT KINDS OF PROBLEM? 

Exemplification clarifies meaning so, after this general discussion of 
mathematical literacy and its curriculum implications, we offer a few exam-
ples of the kinds of task that one would expect students to tackle in curricu-
lum and assessment that is focussed on ML. We begin with some assessment 
tasks – always good way to communicate learning goals, since they are brief 
and specific.  For practical reasons, PISA uses a mixture of multiple choice 
and short answer items (OECD, 2003, pp. 57-92), illustrated by these first 
two tasks: 

 
Example 3.4.2-1:  Rock Concert 

For a rock concert a rectangular field of size 100 m by 50 m was reserved 
for the audience. The concert was completely sold out and the field was full 
with all the fans standing. Which one of the following is likely to be the best 
estimate of the total number of people attending the concert? 

2000,   5000,   20000*,   50000,   100000 
 
Example 3.4.2-2:  Robberies 

A TV reporter showed the graph below and said: “The graph shows that 
there is a huge increase in the number of robberies from 1998 to 1999.” 
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Figure 3.4.2-1. Graph of the number of robberies per year   

Do you consider the reporter’s statement to be a reasonable interpretation 
of the graph?  Give an explanation to support your answer. 

Of course, ML assessment or curriculum can and should have much more 
substantial and extended tasks than these. The Numeracy through Problem 
Solving (NTPS, 1987-89) modules provide examples of areas that motivate 
students to remarkably good, extended reasoning – for many students, work 
of much higher standard than their usual formal mathematics. The flavour is 
given by examples in the previous chapter and by Design a Board Game. 
Students begin a design process by critiquing and improving a number of 
badly-designed games. Both mathematical and non-mathematical faults are 
considered; the clarity of the rules, the fairness and interest of the game, the 
geometry of the board design and so on.  

 
Example 3.4.2-3:  Snakes and Ladders 

Read the description of a game given in Fig. 3.4.2-2, then answer the 
questions below. 

 
Figure 3.4.2-2. Description of a game 
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Questions:  
1. Suppose you start by tossing a head, then a tail, then a head. Where is 

your counter now? 
List and describe all the faults you notice with the board. 

 
The goal here was to check that the student understands the basic princi-

ples of board game design, notably that the board and the rules must work 
together, and can apply a careful logical analysis. As in many well-enginee-
red complex tasks, there is a ‘ramp’ of difficulty – some of the faults are 
harder to find than others.   

At the end of each NTPS module there were written examinations at two 
levels, Standard and Extension, to assess how far the student can transfer the 
skills and insights they have developed in doing the three-week module to 
less- or more-distant contexts. 

What are the general principles for task types for ML? Typical ML chal-
lenges involve real data, non-routine procedures, and complex reasoning, yet 
often require only relatively elementary mathematics.  In contrast, school 
mathematics problems feature increasingly abstract concepts using simpli-
fied numbers, straightforward procedures and stylised applications.   

Whereas school mathematics stresses elementary uses of sophisticated 
mathematics, mathematical literacy focuses on sophisticated uses of (of-
ten) elementary mathematics.   

Steen and Forman (2001) have summarised the characteristics of good ML 
problems as part of a list of “Principles of Best Practice” and we have 
adapted them for this book: 

High quality mathematical tasks are authentic, intricate, interesting, and 
powerful 

Authentic: they portray common contexts and honest problems; employ 
realistic data, often incomplete or inconsistent; meet expectations of users 
of mathematics; use realistic input and output; and, above all, reflect the 
integrity of both mathematics and the domain of application. 

Intricate: they expect students to identify the right questions to ask; re-
quire more than substitution into formulas; employ multi-step procedures 
and chains of reasoning; stimulate thinking that is cognitively complex; 
confront students with incomplete (or inconsistent) information; and 
demonstrate the value of teamwork. 



6 Chapter 3.4.2
 

Interesting: touch on areas of interest to students; appeal to a large num-
ber of students; they offer multiple means of approach; invite many 
variations and extensions; and provide horizontal linkages to diverse ar-
eas of life and work. 

Powerful: they encourage and connect graphical, numerical, symbolic, 
verbal, and technological approaches; offer vertical integration from ele-
mentary ideas to advanced topics; propel students to more advanced 
mathematics; expand students’ views of mathematics, its value and uses; 
demonstrate the importance of mathematics in the modern high perform-
ance work place, and in everyday life.  

This book contains many examples of tasks that qualify as ML. 

3. PATHWAYS TO MATHEMATICAL LITERACY 

How do we recognise progress in ML?  Essentially, students tackle more 
complex problems, in contexts less familiar to them, using more powerful 
mathematics – but only where it pays off in greater insight and/or more ef-
fective action.  What is the micro-structure of this development?   

PISA has investigated and described growth in mathematical literacy by 
focussing on a set of mathematical competencies that are based on the KOM 
framework. In conformity with the approach taken by PISA to report levels 
of proficiency in reading following the first round of assessment in 2000 
(OECD 2001), the PISA project has developed and published six described 
levels of mathematical literacy (OECD 2004). A clear progression through 
these levels is apparent in the way in which the individual mathematical 
competencies specified in the PISA mathematics framework (OECD 2003) 
play out as mathematical literacy levels increase. They describe the stages of 
development, in increasing order, of the various competencies as: 
• Thinking and reasoning: Follow direct instructions and take obvious ac-

tions; use direct reasoning and literal interpretations; make sequential de-
cisions, interpret and reason from different information sources; employ 
flexible reasoning and some insight; use well developed thinking and rea-
soning skills; use advanced mathematical thinking and reasoning. 

• Communication: follow explicit instructions; extract information and 
make literal interpretations; produce short communications supporting in-
terpretations; construct and communicate explanations and argument; 
formulate and communicate interpretations and reasoning; formulate pre-
cise communications. 
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• Modelling: apply simple given models; recognise, apply and interpret 
basic given models; make use of different representational models; work 
with explicit models, and related constraints and assumptions; develop 
and work with complex models; reflect on modelling processes and out-
comes; conceptualise and work with models of complex mathematical 
processes and relationships; reflect on, generalise and explain modelling 
outcomes. 

• Problem posing and solving: handle direct and explicit problems; use 
direct inference; use simple problem solving strategies; work with con-
straints and assumptions; select, compare and evaluate appropriate prob-
lem solving strategies; investigate and model with complex problem 
situations. 

• Representation: handle familiar and direct information; extract informa-
tion from single representations; interpret and use different representa-
tions; select and integrate different representations and link them to real 
world situations; make strategic use of appropriately linked representa-
tions; link different information and representations and translate flexibly 
among them. 

• Using symbolic, formal and technical language and operations: apply 
routine procedures; employ basic algorithms, formulae, procedures and 
conventions; work with symbolic representations; use symbolic and for-
mal characterisations; mastery of symbolic and formal mathematical op-
erations and relationships. 

 
Like all models of problem solving, this model of stages is informative 

rather than definitive.  For example, a given person will be at different 
stages, depending on the complexity, unfamiliarity, and technical demands 
of the problem they are tackling.  Nevertheless such stages are characteristic 
of growth in these various competencies. They also provide a useful point 
from which further research may be directed to generating greater refine-
ment in describing development in mathematical literacy. 

4. CONTENTIOUS ISSUES 

Chicken or egg – which comes first?   
Many people believe that skills must precede applications and that once 

learned, mathematical skills can be applied whenever needed (in practice, for 
many students, in a future that never arrives). This is a false dichotomy.  
Considerable evidence about the associative nature of learning suggests that 
the skills-first approach works imperfectly, at best. For many students, skills 
learned free of context are skills devoid of meaning and utility. To be useful, 
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skills must be taught and learned in settings that are both meaningful and 
memorable.  One may observe that Pure Mathematics:  
• grows vertically;  
• climbs the ladder of abstraction to reveal, from sufficient height, common 

patterns in seemingly different things – abstraction is what gives mathe-
matics its power, enabling methods derived in one context to be applied 
in others.   

Mathematical literacy, on the other hand: 
• grows horizontally; 
• makes multiple connections, the core of understanding;  
• clings to specifics in each context; 
• marshals all relevant aspects of setting and context in order to reach con-

clusions that are reliable in practice.   
Across contexts, ML shows the pay-off of abstraction – that the same 
mathematical tools can be powerful in a wide range of different areas. 

 
Will ML undermine “real mathematics”?   
Sceptics fear that modelling, if encouraged, will replace rigour and proof 

in mathematics classrooms. There are many legitimate reasons to ensure that 
reasoning and proof do not disappear from school mathematics.  Students 
need to learn that justification is a distinctive part of mathematics; that proof 
is more than plausibility or confirmation; that among the levels of convinc-
ing argument, mathematical proof alone yields certainty; and that the rigor of 
mathematical proof makes lengthy chains of logical argument reliable.  Al-
though mathematical modelling rarely emphasizes formal proof, it does em-
phasise the value of: 
• accuracy at the end of a long chains of inference and calculation; 
• justifying findings, especially their applicability in relation to the prob-

lem context; 
• explaining reasoning to team-mates and teachers; 
• presenting conclusions coherently.   

Through these means, modelling both demonstrates and rehearses the 
importance of rigorous logical argument. 

 
Who should teach ML?   
Many argue that mathematical literacy must be learned in context, while 

others believe that only mathematics teachers have the preparation and in-
centive to focus on it. The issue is complex.  Since you can only model situa-
tions you already understand at least qualitatively, everyday life contexts are 
the obvious place for students to learn active modelling with mathematics. 
Teachers of the students’ first language (English teachers in the Anglophone 
world) have long used everyday life problems as contexts for student work 
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in their classrooms; ML asks mathematics teachers to do the same.  For 
many this is a new challenge, needing good teaching materials and profes-
sional development support.   

Ideally, students would also develop ML in other subjects – in history 
and geography, in economics and biology, in agriculture and culinary arts, 
and in social studies. Because contexts needing ML are ubiquitous, opportu-
nities abound to teach it across the curriculum — in reading maps, designing 
art projects, understanding rules of grammar, analyzing scientific data, and 
interpreting legal evidence. Only by repeatedly using diverse aspects of ML 
in real contexts will students develop the habits of mind of a numerate citi-
zen. Thus mathematics teachers should not, and can not, bear the entire bur-
den of helping students become numerate. Like literacy, mathematical liter-
acy is everyone's responsibility.  

But do students understand other school subject areas well enough to 
model them autonomously? It is usually enough of a challenge to learn mod-
els in physics or economics – which is an important but very different proc-
ess. Experience suggests that mathematical literacy across the curriculum 
will only happen if students first learn to model familiar practical problems 
in mathematics lessons. Cross-curricular teaching is an ideal, often tried but 
rarely sustained in schools; it only works when approached ‘from both 
sides’. 

If ML is to become a reality, it will probably depend on mathematics 
teachers carrying prime responsibility, with other subjects building on the 
foundations so laid. Perhaps, following a suggestion in the report Making 
Mathematics Count (Smith, 2004), mathematics should be seen as two sub-
jects: mathematical literacy as the gatekeeper subject4 for all students, and 
additional5 specialist mathematics for those who want it for their future in-
terests as scientists or traditional engineers – or simply find mathematics in-
teresting enough to want further study.  In some countries, English Language 
and English Literature are two subjects related in much the same way. 

 
Is this mathematics?  
ML is neither an expanded list of topics to be added to the mathematics 

curriculum nor is it just the basic skills part of a traditional mathematics pro-
gram. Many basic mathematical skills (e.g., number sense and operations, 
proportional reasoning, estimation, logic, data analysis) are essential for ML 
– but so too are other concepts not much emphasized in school mathematics 
curricula (e.g., computer tools, statistical inference, mathematical communi-
cation). The open-ended thinking required to diagnose problems or to make 
decisions relies heavily on “newly useful” areas such as combinatorics, sta-
tistics, and geometry. In contrast, algebra and calculus, dominant features of 
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today’s curriculum, are used outside of school more as tools for calculation 
than as tools for reasoning, and only by specialists in certain fields. 

Some worry that modelling problems are a time-consuming distraction 
that typically use relatively routine mathematical tools. While this may be an 
accurate description of some weaker programs, good modelling problems 
require a sophistication and precision that can push even the best students to 
attain mathematical results well beyond those achieved by most students in 
today’s classrooms. As they secure a broad foundation of examples and con-
crete mathematics, students engaged in modelling build lasting connections 
between mathematics and the world in which they live. This grounding in 
specifics will lead naturally to subsequent generalizations and abstractions. 
Modelling parallels good pedagogy by moving from the specific to the gen-
eral and from the concrete to the abstract. 
 

                                                      
1 In some contexts and some nations, these terms are used narrowly to mean just “basic skills” 

– arithmetic plus a bit more.  This is a corruption of the terms, just as literacy means much 
more than spelling, grammar and syntax.  These skills are necessary but far from sufficient. 

2 The original definition, now often distorted, of the term numeracy – in the 1959 Crowther 
Report. 

3 The classroom contract is the agreement, usually unspoken and implicit, between teacher 
and students as to what each will do, what roles they will play, in the classroom.  (The 
French, who first articulated the idea (Brousseau, 2003,p.24), call it the 'didactic contract'  
but in English 'didactic' is used to describe a specific, teaching style – lecturing that brooks 
no argument.  That is the reverse of what we need here, or in any classroom focussed on 
learning.) 

4 Much more justifiable, as a universal requirement meeting a universal need, than current 
secondary mathematics which few adults can use in their lives beyond education. 

5 If it is offered as an alternative, it will surely remain the prestige track, with ML becoming a 
‘sink’ subject, taken only by weak students, while the well-qualified adult population re-
mains innumerate. 


