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+he 

by Milo Schield 

Understanding 
Confounding from Lurll1ng 
Variables Using Graphs 

Did you know the United States has a higher 
death rate than Mexico? It's a fact. In 2003, the 
death rate was 800Al higher in the United States 

than in Mexico (8.4 per 100,000 compared to 4.7 per 
100,000). 

What does this statistic mean? Does Mexico have 
better health care than the United States? That seems 
unlikely. Yet it is difficult to claim that this unexpected 
result is due to chance, error, or bias. The populations 
being studied are large, and death is definite, therefore 
usually counted accurately. You may be perplexed 
further when you learn that death rates are even lower 
in Ecuador and Saudi Arabia (4.3 per 100,000 and 2.7 
per 100,000). 

A possible explanation is confounding: "a situation 
in which the effects of two processes are not separated," 
according to John M. Last's A Dictionary of Epidemiology. 
Confounding can be due to a lurking variable. Often 
referred to as a confounder, Last says a lurking variable 
"can cause or prevent the outcome of interest .. . and [is] 
associated with the factor under investigation." 

Lurking variables are called "lurking" because they 
are not recognized by the researcher as playing a role in 
the study. Although they can influence the outcome of 
the process being studied, their effect is mixed in with 
the effects from other variables. 

<..uHILJat.u•~ the death rates in the United States 
and Mexico, a lurking variable may be the difference 
in the age distributions within each population. Mexico 
has a much younger population than the United States. 
In 2003, there were 59% more people under 15 in 
Mexico than in the United States (32% of the Mexican 
population, compared to 21% of the United States 
population). In addition, there were more than twice 
as many people 65 or older in the United States as in 
Mexico (12% compared to 5%). 

It's a fact that older people are much more likely 
to die than younger people. Unless we take age into 
account, a comparison of the crude (not accounting 
for age) death rates may be misleading. Mexico's 
comparatively low death rate is more likely due to 
its youthful population, rather than to its health care 
system. 

So how can we untangle this confusion? How can 
we take into account the influence of a lurking variable 
that confounds an association? 

Standardizing 
Standardization is used in demography to 'take into 

account' the distribution of ages within a population. It 
can take into account the influence of a related factor 



when comparing ratios for two groups so we are not 
comparing "apples to oranges." When the death rates 
of Mexico and the United States are standardized for 
age, the death rate in Mexico is higher than that in the 
United States. 

Standardization also can take into account the 
influence of a related factor when comparing ratios 
over time for the same group. For example, according 
to the 2001 United States Statistical Abstract, the crude 
death rate due to pneumonia was 7.4% higher in 1996 
than in 1990 (33.4 per 100,000 compared to 31.1 per 
100,000). But when standardized on the 1940 United 
States population distribution, the age-adjusted death 
rate due to pneumonia was 5.1% lower in 1996 than in 
1990 (13.0 per 100,000 compared to 13.7 per 100,000). 
In this case, standardizing actually reversed the direction 
of the association. 

Standardizing Ratios Graphically 
To 'see' standardization, it would be nice to have 

a simple technique-ideally graphical-that will take 
into account or 'adjust for' the influence of a lurking 
variable. 

In an article that appeared in Tbe Roles of 
Representation in School Mathematics, Lawrence Lesser 
featured a graphical technique for showing how an 
association can be influenced when the lurking variable 
has just two values. The graph shows how a weighted 
average can be obtained easily without algebra. Howard 
Wainer did the same in a 2002 CHANCE article, 
"The BK-Plot: Making Simpson's Paradox Clear to the 
Masses." Milo Schield used this technique to illustrate 
standardization in "Three Graphs To Promote Statistical 
Literacy," presented at the 2004 International Congress 
on Mathematical Education. To see how it works, let's 
consider some examples. 

Patient Death Rates by Hospital 
Table 1 and Table 2 present the underlying data 

(hypothetical) for two hospitals: Rural Hospital and 
City Hospital. Patients in good condition can walk in; 
patients in poor condition are carried in. 

1i bl 1 Death R a e . ates o f p . b H . I db C d .. ahents ')y osp1ta an " on 1hon 

Death Patient Condition 
Rate Good Poor All 
Rural 2.0% 7.0% 3.5% 

City 1.0% 6.0% 5.5% 

All 1.5% 6.5% 

We want to analyze the association between hospital 
(predictor) and death rate (outcome). First, we plot the 
data from Table 1 in Figure 1. City Hospital has a death 
rate of 6% for patients in poor condition and 1% for 
patients in good condition. Connecting these data values 
gives the heavy dashed line. Rural Hospital has a death 
rate of 7% for patients in poor condition and 2% for 
patients in good condition. Connecting these data points 
gives the light dashed line. 

Table 2. Number of Patients by Hospital and by Condition 

Number of Patient Condition 
Patients Good Poor All 
Rural 700 300 1,000 
City 100 900 1,000 
All 800 1,200 2,000 

From Table 2, we can see that 90% of the patients 
in City Hospital are in poor condition, while only 300Al 
of those at Rural Hospital are in poor condition. Plotting 
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these percentages in Figure 1 gives the death rates at 
City Hospital and Rural Hospital. 

Death Rates by Hospital . . . . . -. . .... o-. . . ... 
Rural Hospital •• • 

. . .... ........ I 

..~ .. · .... -City Hospital I .... . . .... . . .... .... . 
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F"tgUre 1. Hospital death rates by percenlage of patients in poor 
condition 

The death rate is much higher at City Hospital 
(5.5%) than at Rural Hospital (3.5%). Based on this, Rural 
Hospital would seem like a better hospital than City 
Hospital. But notice that City Hospital has a lower death 
rate than Rural Hospital for patients in good condition 
and those in poor condition. This is an example of 
Simpson's Paradox. Simpson's Paradox occurs when an 
association has one direction at the group level, but the 
opposite direction in each of the sub-groups. 

Before we shut down City Hospital as "the hospital of 
death," we need to consider whether City's higher death 
rate could be confounded by patient condition. Note 
that patient condition is associated with the outcome of 
interest (death) and with the predictor (hospital). Being 
in poor condition is positively linked with dying. Dying 
is more likely for patients in poor condition (6.5%) than 
for those in good condition (1.5%). See Table 1. Being 
in poor condition is positively linked with City Hospital. 
The percentage of patients who are in poor condition is 

Standardizing Hospital Death Rates 
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F"~gure 2. Hospital death rates standardized based on patient 
condition 

greater at City (9()0/o) than at Rural (30%). See Table 2. 
To make a fairer comparison of these hospitals, 

we need to standardize their mix of patients. Let's 
standardize both hospitals on their combined mix (60%). 
Using the group average as the standard emulates the 
desired outcome in a randomized experiment where the 

goal is for each group (exposure and control) to have 
the same percentage of confounder as found in the 
overall population. 

Standardizing the mix in both groups at 60% 
increases the expected death rate at Rural Hospital and 
decreases it at City Hospital, as shown in Figure 2. The 
standardized death rate is lower for City Hospital than 
for Rural Hospital (4% compared to 5%). In this case, the 
direction of the association between the standardized 
rates is the reverse of that between the crude rates-and 
we have a fair comparison of the two hospitals; we are 
comparing "apples and apples." 

Family Incomes by Race 
Here is another case. Suppose that in the United 

States in 1994, mean family income was 66% more for 
whites than for blacks ($54,500 compared to $32,900, 
as estimated based on the United States Statistical 
Abstract). (See Table 3) Is the black-white income gap 
fully explained by only race? The $21,600 white-black 
income gap could be confounded by a related factor: 
family structure. 

Table 3. Estimated Family Incomes by Race and Family Structure 

Family Head of Family 
Income Unmarried Married All 
White $26,700 $60,600 $54,500 
Black $14,000 $53,900 $32,900 
All $23,000 $60,100 $51,900 

Family income is higher for married-couple families 
($60,100) than for single-parent families ($23,000). In 
order to standardize data, we need the distribution of 
families by family structure within each race, as shown 
in Table 4. 

Based on Table 4, families headed by a married 
couple is more likely among whites than among blacks 
(82% compared to 47.5%). Figure 3 summarizes this data 
so it can be standardized graphically . 

US Family Income by Race & Structure 
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F".gure 3. Family incomes standardized based on family structure 

To take into account the influence of family 
structure, let's standardize the mix of family types to a 
standard mix: the overall percentage of families who 



Table 4. Number of Families by Race and Family Structure 

Families, 
Head of Family 

1994 Unmarried Married All 

White 10,539 47,905 58,444 
Black 4,251 3,842 8,093 
All 14,790 51,747 66,537 

are married (78%). Standardized family income is 18% 
more for whites ($53,000) than for blacks ($45,000). 
Standardizing on family structure decreases the black­
white income gap by 65%, from $21 ,600 to $8,000. Thus, 
65% of the black-white family income gap is explained 
by family structure. 

Auto Death Rates by Airbag Presence 
We generally think airbags are good. That conclusion 

is supported by the data in Table 5, which appeared in 
Mary C. Meyer and Tremika Finney's CHANCE article, 
"Who Wants Airbags?". For the occupants of automobiles 
in accidents, the death rate is lower for those with an 
airbag than for those without (37 per 10,000 compared 
to 60 per 10,000). 

Table 5. Death Rate per 10,000 Automobile Accident Occupants 

Death Rate Seatbelt Used 
A irbag No Yes All 
No 105 26 60 
Yes 122 18 37 
All 111 21 

But wait! For those not using a seatbelt (left column), 
the death rate was higher for those with an airbag than 
for those without (122 per 10,000 compared to 105 per 
10,000). The association between airbags and death rate 
may be confounded by seatbelt usage. Consider the 
distribution of automobile accident occupants as shown 
in Table 6. 

Auto Deaths vs Alrbag Presence 
Confounded by Seatbett Use 

·•·· .. Airbag 
~ ~- ··. 

None 

No Alrb~iJ"' .. • :~· ~·-. · .• .. · .. 
.. .. ·: · :.· .. v. Stan ardlze 

NoAirbog~. 

Percentage who wear Seatbelta All 

F"lflure 4. Automobile accident death rates with and without an 
airbag, standardized based on seatbelt usage 

Using a seatbelt is positively associated with a lower 
death rate, as the death rate was much higher for those 
who didn't use a seatbelt at all than for those who used 
one (111 per 10,000 compared to 21 per 10,000 in Table 
5). And using a seatbelt is positively associated with 
having an airbag, as the percentage using a seatbelt is 
greater among people in cars with airbags than in cars 
without (85% compared to ()()o;O in Table 6). 

Let's standardize on the overall percentage of 
people in accidents who were wearing a seatbelt (73%), 
as shown in Figure 4. 

Table 6. Automobile Accident Occupants Using Seatbelts 
and/ or Having Airbags 

Number Seatbelt Used 
(1,000) 
Airbag No Yes All 
No 1,952 2,903 4,855 
Yes 871 4,872 5,743 
All 2,823 7,775 10,598 

The standardized death rate of occupants in auto 
accidents is slightly higher for those with air-bags than 
for those without (47 per 10,000 compared to 46 per 
10,000). So, do airbags save lives? Not on average for 
this mix of occupants. This situation is complex because 
there is an interaction between having airbags and using 
seatbelts. We can see this because the lines cross. The 
main point is that seatbelts make a bigger difference in 
saving lives! Without taking into account the effect of 
seatbelts, the effect of airbags is almost masked due to 
the confounding and interaction. 

Analysis of Confounding 
Now that we have seen how a lurking factor can 

confound our understanding of a statistical association, 
it is good to reflect on what causes these situations and 
what we can do to avoid them. 

Notice what is common to the three examples 
we have examined. In each case, the researcher was 
an observer. The researchers did not (and could not) 
assign patients to a particular hospital, determine 
which families were headed by a married couple, or 
determine which car owners bought cars with an airbag. 
Studies in which the researcher is passive in assigning 
subjects to exposure and control groups are called 
observational studies. While the influence of chance 
decreases as sample size increases, the influence of a 
confounder remains unchanged in observational studies. 
The influence of confounding can be a major problem­
if not the main problem-in social sciences research, 
according to Stanley Lieberson in Making It Count. 

Confounding also can arise in any study­
observational or experimental-where the response 
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due to a factor is observed or measured at a single 
level and the choice of level influences the association. 
Because most studies in the news are observational, 
understanding confounding is absolutely necessary to 
being statistically literate. 

A Problem from Baseball 
To test your understanding of this graphical 

technique, try working out this problem from baseball. 
Ted and Sam are on the same baseball team. Both 

players have been to bat 100 times. Sam had 26 hits and 
Ted had 34 hits. So, Sam's batting average is .260 (26%) 
and Ted's is .340 (34%). But the coach thinks Sam is the 
better hitter. Could this be due to Simpson's Paradox? 
Could the strength of the pitcher be a factor? Could the 
percentage of times each player faced a strong pitcher be 
a lurking variable? If the pitcher was weak, Sam hit 50% 
of his times at bat while Ted hit 400i<J of the time. When 
facing strong pitchers, Sam hit 200i<l of the time while 
Ted hit only 100i<l of the time. Who is the better hitter? 
To answer this question, standardize their averages as 
if each faced strong pitchers SOOI<l of the time. After you 
have worked this problem, check your answer with the 
answer on Page 21. 

Conclusion 
The influence of context on comparisons of ratios 

can be profound. Context is an essential difference 
between statistics and mathematics. To understand 
the influence of context on a statistic or a statistical 
association, it helps to understand the confounding 
effect of lurking variables. 

Confounding from lurking variables is the reason 
that "association is not necessarily causation." With this 
understanding, we have a stronger reason to be careful 
in using statistical association as evidence for casual 
connections. A statistical association is only the flrst step 
in establishing causation. 

Confounding and standardization are two of the 
most important ideas in statistics. Once we recognize 
that standardizing (taking into account confounding) can 
change the size of a comparison-and may even reverse 
the direction (Simpson's Paradox)-we have taken a big 
step toward being statistically literate. 

Viewing confounding as the influence of context 
increases our statistical literacy and provides a link 
between statistics and other areas of study, including the 
social sciences and the humanities. For more about this, 
see Schield's "Statistical Literacy and Liberal Education 
at Augsburg College," available at www.StatLit.orglpdfl 
2004Scbield.AACU.pdf • 

Editor's Note: Tbe author would like to thank the 
W M. Keck Foundation for their grant "to support the 
development of statistical literacy as an interdisciplinary 
curriculum in the liberal arts" and Tom Burnham, 
Cynthia Schield, and Marc Isaacson for editorial 
assistance. 
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study has been instrumental in developing the current 
understanding of heart disease and has led to more than 
1,200 publications about risk factors for coronary disease. 
The cost of this study over the years, however, is measured 
in the tens of millions of dollars. 

QUALITY OF INFORMATION FROM 
OBSERVATIONAL STUDIES 

The money spent on observational studies can be well 
worth it if the studies produce sound results. Otherwise, 
if confounding is an overwhelming problem, the studies 
might be leading us in the wrong direction. Several recent 
efforts have been made to evaluate the quality of results 
from observational studies, and, in general, the results are 
promising. It seems that with well-designed observational 
studies, the risks of confounding can be limited. Concerns 
have been expressed that observational studies tend to 
exaggerate treatment effects. A New England journal of 
Medicine article by]. Concato, N. Shah, and R. Horowitz, 
"Randomized, Controlled Trials, Observational Studies, 
and the Hierarchy of Research Designs," indicates that 
''well-designed observational studies (with a cohort or 
case-control design) did not systematically overestimate 
the magnitude of the associations between exposure and 
outcome as compared with the results of randomized, 
controlled trials." In fact, it seems there can be more 
variability in the outcomes of the randomized, controlled 
trials than in the observational studies. 

For our example, appendectomies, there have been 
a number of studies that have compared the results of 
laparoscopy and open surgery. The consensus wisdom 
is that laparoscopic surgery, the less invasive alternative, 
is the preferred method for straightforward cases. This 
consensus has been established by a combination of 
both observational studies and randomized, controlled 
trials. A comparison by K. Benson and A. Hartz of eight 
observational studies and 16 randomized, controlled trials 
revealed that seven of the eight observational studies 
found an advantage for laparoscopy (and the eighth no 
difference), while, among the 16 randomized trials, eight 
favored laparoscopy, three favored open surgery, and the 
remaining five had very close results. 

Conclusion 
To use a randomized, controlled trial, the research 

question must be relatively mature--with some confidence 
that a treatment is meaningful-before the cost of the trial 
can be justified. An observational study can set the stage. 
In many situations, an observational study is a first step 
toward understanding by roughly identifying associations 
that can be more closely examined with either a more 
rigorous observational study or a randomized, controlled 
trial. The issue of confounding with observational studies 
is real, but we can benefit from an observational study 
by having a more developed view that places the value 
of a randomized, controlled trial in a more meaningful 
context. • 
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Answer to Baseball 
Problem 
from Page 18 

The players' standardized batting 
averages are .350 (35%) for Sam and .250 
(25%) for Ted After taking into account 
(controlling for or conditioning on) the 
strength the pitcher, Sam's batting average 
is higher than Ted's. So, the Coach is right 
- Sam is the better hitter. 

Batting Averages by Player 
Confounded by Quality of the Pitcher 
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