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Abstract 
Statistical literacy studies statistics used as evidence in 
everyday arguments.  This paper studies those aspects 
of chance that seem most relevant to statistical literacy.  
Web prevalences of chance-related terms are used to 
select chance topics relevant to statistical literacy such 
as ‘better than chance’, ‘due to chance’, chance in evo-
lution, the Law of Very Large Numbers, Trojan num-
bers, informal statistical significance and a Bayesian 
view of confidence intervals and statistical significance.  

1. Chance 
Chance is an extremely basic concept in everyday usage 
as seen in the Yahoo prevalence (log10) of these terms 
in Appendix A: probability (7.6), possibility (8.1), 
accident (8.2), random (8.5), likely, risk and chance 
(8.6), certain (8.7), possible (8.9), and can (9.6). 

1.1. Chance in Statistical Literacy 
Consider the Yahoo prevalence of traditional and non-
traditional statistical terms. Such rankings help in iden-
tifying topics for statistical literacy.  

Prevalence of traditional statistical terms: “type 1 er-
ror,” “type 2 error” (4.6), “prediction interval” bio-
rhythm (4.7), Chi-squared test” (5.0), “hypothesis test,” 
F-test (5.3), “significant result” “sampling distribution” 
“due to chance” (5.4), “binomial distribution”, “random 
assignment” (5.6), “Central Limit theorem”, “statistical 
tests” “significance level” (5.7), “statistical inference” 
(5.9), “null hypothesis”, p-value, “random sampling” 
(6.0), “confidence level”, “normal distribution” (6.2), 
“t-test”, “statistical significance” “analysis of variance” 
(6.3), “random sample”, “margin of error”, “standard 
error”, “confidence interval” (6.4), “random number” 
(6.7), “statistically significant”, “standard deviation,” 
“significant difference” (6.8) and “by chance” (6.9). 

Prevalence of other terms with ‘chance’: “fortune tell-
ing” (5.3), “lie detector” (5.4), extraterrestrial (5.8), 
“bible codes” (5.9), “intelligent design” (6.1), paranor-
mal, superstition (6.2), Tarot (6.3), astrology, UFO 
(6.4), prophecy, “global warming” ESP (6.5), psychic 
(6.6) coincidence (6.7) aliens (6.8), ruin (6.9), conspir-
acy, betting (7.0), gambling, lottery, prayer, bible (7.1), 
chaos, evolution, fortune disaster (7.2), accident (7.3), 
religion (7.4), insurance (7.5), risk, God (7.7), death 
(7.8), weather, sports (8.0), love (8.1) and life (8.2). 

1.2. Chance in Traditional Statistics 
Chance-related topics may be different in statistical 
literacy than in traditional statistics.  McKenzie (2004) 
asked statistical educators in his session at the 2004 
JSM to grade the following 30 statistical topics.  The 
numbers shown in Table 1 are percentages: the count 
per 100 respondents in each category. 

Six statistical inference concepts (randomness, signifi-
cance, sampling distributions, hypothesis tests, confi-
dence intervals and random samples) ranked among the 
top 9 core concepts.1   

Table 1: Statistical Topics Survey Results 
 Percentage 

Of All Reponses2 
Core 

Concept 
TOP 3 

Important 
TOP 3 

Difficult 

1 Variability 96 75 12
2 Association vs. Causation 82 31 6 
3 Randomness 77 14 8 
4 Significance (Practical/Statistical) 77 14 16 
5 Data Collect (Exp, Obs, surveys) 75 24 4 
6 Sampling Dist (Law Lg. #, CLT) 71 25 66 
7 Hyp. test (crit value, p-value, pwr) 64 22 66 
8 Confidence Interval 63 12 16 
9 Random Sample 63 10 4 

10 Data types 61 8 4 
11 Center 59 6 0 
12 Assumptions 55 8 20 
13 Graphing 54 10 0 
14 Uncertainty 54 10 2 
15 Distributions 52 10 14 
16 Independence 50 4 16 
17 Bias 48 2 2 
18 Correlation 48 2 6 
19 Shape 45 0 0 
20 Data Exploration 43 8 0 
21 Proportion 41 0 0 
22 Least-squares Regression 39 2 8 
23 Models 38 4 12 
24 Comparisons 38 2 2 
25 Prediction 34 2 2 
26 Outliers (aspects of robustness) 32 0 0 
27 Cross-sectional vs. longitudinal 11 0 0 
28 Regression effect 11 0 4 
29 Process 7 0 0 
30 Transformations 2 0 10 

Some educators disagreed:3 randomness (23%), signifi-
cance (23%), sampling distributions (29%), hypothesis 

                                                           
1 A core concept is “a big idea or fundamental principle.” 
2 Maximum marks: Core concepts (54), Importance (38), Difficulty 
(38).  Sum of marks: Core concepts (833), Importance (154), Diffi-
culty (150). Respondents were not limited on core topics (the average 
respondent selected 17 items), but could only vote for three topics for 
the Top 3.  The number of respondents inferred and used above: Core 
concepts (56 surveys), Top 3 Importance (51), Top 3 Difficulty (50)  
3 The concepts are not clearly exclusive so votes may have been split.  
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tests (36%), confidence intervals (37%), random sam-
ples (37%) and bias (52%).   

Textbooks spend many more pages on hypothesis tests 
and sampling distributions than on association-
causation.  This may reflect difficulty (66% & 66% vs. 
6%) more than importance (64% & 71% vs. 82%). 

This list seems to omit some key topics in traditional 
statistics such as confounding, conditional probability, 
multivariate modeling/analysis and Bayesian statistics.   

2. Key Ideas Involving Chance 

The following 12 topics are candidates for key ideas 
involving chance in statistical literacy.  While condi-
tional probability and the grammar of rates and percent-
ages are key elements of statistical literacy closely 
related to chance, they are covered in Schield (2004a). 

2.1. Chance in Everyday Life 
Chance (8.6) is extremely common in everyday usage.  
According to Wikipedia, chance has three distinct uses: 
Luck, Randomness and Probability.  As luck, chance 
has a semi-causal status (by chance).  As randomness, 
chance is coincidence.  As a probability, chance meas-
ures uncertainty.  Uncertainty and probability only refer 
to the last two forms – not to the causal form.  Chance 
can also refer to different kinds of probabilities: ana-
lytical, empirical or subjective. 

Chance is commonly involved with sports, weather 
(8.0), gambling (7.1) and betting (7.0).  Chance maga-
zine4 is a good source of articles on these topics.   

Chance grammar (8.6) is common but often ambiguous.  
Chance grammar can blur the distinction between a past 
prevalence (the percentage of W who are P) and an 
indefinite event (People who are W are more likely to 
have P).  In a Bernoulli model this difference is irrele-
vant since the subjects are identical and the outcome 
prevalence is constant over time.  But in reality there is 
no such guarantee so the move from prevalence to 
chance may be disputable.  Chance grammar can blur 
the distinction between process and outcome so the 
random element is unknown.  C.f., “the chance that A 
contains B” (the chance that a 95% confidence interval 
contains the population parameter).  Chance grammar 
can ignore the context (c.f., “50% chance of rain”) 

Chance can function as a premise or as a disputable 
conclusion.  E.g., An outcome is unlikely “if due to 
chance” (1.3) or is unlikely “to be due to chance” (3.3).  
But “due to chance” (5.3) or “by chance” (6.9) are 
ambiguous.  For example, Sir Ronald Fisher said, “First 
convince us that a finding is not due to chance, and 

                                                           
4
 The index for 1988-1997 contains entries on baseball, basketball, 

the bible, figure skating, football, gambling, games, golf, hockey, 
horseracing, lotteries, marathons, soccer, sports statistics and tennis.  
www.stat.duke.edu/~dalene/chance/chanceweb/index1to10.html 

only then, assess how impressive it is.” Probability was 
defined as “the likelihood that results in a test were due 
to chance.”  “Significance refers to whether a result is 
extreme enough to be unlikely to have arisen by 
chance.”  

2.2. Better Than Chance  
“Better than chance” (4.8) is the claim of various sys-
tems for gambling5 (7.1) and betting6 (7.0).  Some say 
that lie detectors (5.4) and polygraphs (5.4) aren’t any 
better than chance when used in field conditions.7  
Ekman & O'Sullivan (1991) tested whether we can do 
much better than chance8 in deciding if someone is 
deliberately lying.9   

“Better than chance” (4.8), “not due to chance” (4.5) or 
“just a coincidence”10 (5.9) is commonly involved with 
psychic11 phenomena (6.6), extra-sensory perception12 
(6.5), astrology (6.4), tarot (6.3), the paranormal (6.2), 
bible codes13 (5.9) and fortune telling (5.3) and bio-
rhythms14 (4.7). Are their results better than chance?  
Studies (A Double-blind Test of Astrology) say No.15  
One test of psychic power is to see if a person can in-
fluence the output of a random number generator.  See 
Jefferys (1990) and Dobyns (1992).   

To interpret “better than chance”, students must under-
stand chance, the conditional probability involved in 
accuracy (confirmation vs. prediction), random num-
bers, chance of rare events, prediction interval versus 
confidence interval and “statistically significant.”  

2.3. Due to Chance: Evolution 
“Due to chance” (5.4) is a key element in evolution 
(7.2).  Some say, “Life is so complex that it is can’t be 
due just to chance.”  A classic reply is "A thousand 
monkeys, typing on a thousand typewriters will eventu-
ally type the entire works of William Shakespeare."16  
                                                           
5
 Win 86% of the time    www.pokerliving.net 

6
 RacingPicks.Com - Horse Race Handicapping ... will predict race 

outcomes better than chance...www.racingpicks.com/basics.htm 
7 http://antipolygraph.org/cgi-bin/forums/YaBB.pl/YaBB.pl?board=Policy&action=display&num=86 
8
 For n possible outcomes (n > 1), XP = [R-100%/n)]/(1- 1/n).   

For n = 5, see the Lawshe (1975) content-validity index (CVI). 
9
 College students 52.8%, CIA, FBI & military 55.7%, police 55.8%, 

trial judges 56.7%, psychiatrists 57.6% and secret service 64.1%.   
10 http://cms.psychologytoday.com/articles/pto-20040715-000008.html, 
www-class.unl.edu/bios101e/News%20Stories/COINCIDENCE2.htm 
11

 Mirror readers beat the odds in my weekly Psychic Challenge… 
Week after week, your correct responses are significantly better than 
chance would predict. www.digitalzodiac.com/urigeller/nov8.html 
12

 E.S.P. Lottery Secrets  "Learn to Consistently attain better than 
chance results!"  www.mindovermatterovermoney.com/lottery.html 
13

 Pro: www.biblemysteries.com/library/codes1.htm  
Con: http://cs.anu.edu.au/~bdm/dilugim/torah.html 
14 www.skepdic.com/biorhyth.html 
15 http://skeptico.blogs.com/skeptico/2005/02/what_do_you_mea.html 
www.skepsis.nl/astrot.html, www.psychicinvestigator.com/demo/AstroSkc.htm 
16  “If 17 billion monkeys on each of 17 billion habitable planets in 
each of 17 billion galaxies in the universe would be typing away at 
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But the claim that chance alone could produce the evo-
lution of life17 is extremely weak.   

Model #1: Pure chance without genetic inheritance.  
Suppose that an evolutionary process involves rolling a 
ten-sided die where the desired evolutionary outcome (a 
pair of songbirds?) is a run of all ones in a thousand 
tries.  For this ten-sided die, we expect a one in the next 
10 rolls.  The chance that the next thousand rolls of this 
die will give all ones is 1 chance in 101,000 tries. This 
outcome is expected in 101,000 tries.  If random tries 
occur at a rate of 317 times/second (1010 times/year), 
then it would take 10990 years which is immense com-
pared to the age of the earth (~5.109 years).  If this 
model were at all reasonable, it is virtually impossible 
that life could have evolved “due just to chance alone.” 
This is close to the chance that a tornado can turn a 
junkyard into a Boeing 747 jumbo jet.18   

Model #2: Chance plus genetic inheritance.  Now sup-
pose that genetic inheritance preserves every success 
(one) while all non-successes (non-ones) are subject to 
random variation.  To expect 1,000 successes at ten 
tries per success, we need 10,000 tries: 104.  Given the 
same rate as used above (1010 times/year), we obtain the 
1,000 ones in 10-6 years, 0.5 minutes or 30 seconds.  

Analysis: Look at the change in getting a very unlikely 
outcome.  Chance alone: 10990 years (much longer than 
the age of the universe).  Chance with genetic inheri-
tance: 30 seconds.  Even if the particulars are unrealis-
tic, the point is that a causal process (a non-random 
process) working together with chance can achieve an 
unlikely outcome much more quickly than chance alone 
could possibly do.  Evolving apes from single-cell 
organisms is much more likely if done gradually with 
genetic inheritance and a small amount of chance than 
if done in a single step by pure chance alone.   

Does saying this make one anti-evolution and pro-
intelligent design?  No!  Evolution is more than just 
pure chance.  “Not by chance alone” is a red herring in 
arguing about evolution and intelligent design.  

To interpret “due to chance” students needed to under-
stand chance, conditional probability and why some-
thing that has one chance in N of occurring is to be 
expected in N tries (Law of Very Large Numbers) even 
though that outcome may be more unlikely than not.19  

                                                                                           
the rate of one 41 character line per second for 17 billion years, the 
odds that they would have come up with "To be or not to be, that is 
the question" would still be only around: 0.000000000005%.” 
http://wetware.hjalli.com/000067.html 
17 Gene mutation, propagation and recombination may be by chance. 
See www.talkorigins.org/faqs/chance/chance.html 
18 Sir Fred Hoyle: “evolution is as likely as a tornado blowing through 
a junkyard and assembling a Boeing 747 jumbo jet.” 
19 =BinomDist(1,1000,1/1000,0) = 36.81%. 

2.4. Law of Very Large Numbers 
Coincidences (6.7), small chance (6.0) and random 
events (5.8) are common in everyday usage.  The Law 
of Very Large Numbers says “The unlikely is almost 
certain given enough tries.” (Brignell, 2004)20   

The chance of K successes in N tries is given by the 
binomial distribution (where the probability of success 
is P).  Consider success as a run of micro-events each of 
which is very unlikely.  To simplify the math, consider 
the chance of at least 1 run (K > 0).  Let p be the prob-
ability of a success per micro-event.  Let L be the 
length of a run.  The chance of a run of L successes is P 
where P = pL.  Let N be the number of random samples 
of size L.  Let C be the Chance of at least 1 run of L 
successes in N tries.  So, C equals 1 - Chance of NO 
run of L successes in N tries of size L. 

Eq. 1   Chance (no run L successes| N tries, size L)  
= (1-pL)N for all N >= L. 

Eq. 2  C = Chance(≥ 1 run L successes| N tries size L)  
= 1 - (1-pL)N for all N >= L. 21 

The results for a fair coin are shown in Table 2. 

Table 2: Chance(>=1 run L heads| N tries size L) 
L L =1 L = 2 L = 3 L = 4 L = 8

N = 1 0.500
2 0.750 0.438    
4 0.938 0.684 0.414 0.228  

16 1.000 0.990 0.882 0.644 0.061 
256 1.000 1.000 1.000 1.000 0.633 

One expects a run of 8 heads in 8 flips of a fair coin in 
256 tries of size 8.  As shown, there is a 63.3% chance 
of at least one run of 8 heads in 256 tries.  This particu-
lar result is an instance of the Law of Very Large Num-
bers: As the number of tries increases, the unlikely 
becomes almost certain.   

One can solve for the number of trials, N, needed to 
achieve a certain level of confidence (C) in obtaining at 
least one run of length L successes in N tries of size L.  

Eq. 3 Ln(1-C) = Ln[(1-pL)N] = N.Ln(1-pL) 
Eq. 4 N = Ln(1-C) / Ln(1-pL) 

Table 3 shows the number of sets (N) of length L 
needed to achieve a level of confidence, C, in obtaining 
at least one run of L heads in flipping a fair coin. 

Table 3: N sets of L for Chance at least 1 set Heads 
Chance 50% 75% 90% 99%

L
1 1.0 2.0 3.3 6.6 
2 2.4 4.8 8.0 16.0 
4 10.7 21.5 35.7 71.4 
8 177.1 354.2 588.3 1,176.6 

                                                           
20 This is the related to (but not exactly the opposite of) the Law of 
Small Probability: specified events of small probability do not occur 
by chance.  www.leaderu.com/offices/billcraig/docs/design.html 
21 C(K|N, P) = {N!/[K!(N-K)!]}PK(1-P)(N-K).  C(K=0|N, P) = (1-P)N so 
C(K>0|N,P) = 1- (1-P)N.  If P = pL then C(K>0|N, p, L) = 1- [1-(pL)]N. 
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For a given L, to go from 25.0% to 43.8% to 68.4% to 
90% to 99% involves a doubling in N for each step as 
does going from 29.3% to 50% to 75% to 93.7%. 

Now consider the chance of at least 1 run of L suc-
cesses in N tries where N is the number of tries of size 
L in which one desirable event is expected: N = (1/p)L 

Eq. 5  C = 1 - [1-(pL)]^[(1/p)L] 

If N = (1/p)L then in the limit of large N the chance of 
at least 1 run of L successes in N tries22 is [1-(1/e)] or 
63.2121%.  The chance of at least one run24 for a given 
N is never less than this limit.  

Suppose that N = M(1/p)L.  In the limit of large N, this 
is the chance of at least one run of L successes. 

Eq. 6  C = 1 - [1-(pL)]^[M(1/p)L] 

If M = 1, C = 63.21% in the limit of large N; if M = 2, 
C = 86.47%; and if M = 3, C = 95.02%.  In the limit of 
large N where N = M(1/P)L, in N tries of size L the 
chance23 of at least one run of L successes is 1-(1/e)M.  
This chance for a given N is never less than this limit.24 

2.4A  Large Number Law; Binomial Distribution 

The binomial distribution gives the chance of exactly K 
successes.  Figure 1 illustrates K runs of triplets:   

Figure 1: Chance of Triplets in Flipping Coins 
P(K Triplets of Heads)
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If the chance of at least one (K > 0) desirable outcome 
is at least 1-1/e when N = (1/P) where P = pL, then what 
is the chance of exactly one desirable outcome?  As 
shown in Figure 1, this is a maximum when N = 1/P. 

One may be tempted to say that getting exactly 1 run of 
L successes in N tries of probability P is more likely 
than not when N = 1/P, but that is false.25   One can say, 
“Getting exactly one run of L successes in N tries of 

                                                           
22 If Y = P-L, [1-(PL)]^P-L = [1-1/Y]Y. This well-known limit is 1-1/e. 
23 If Y = M/(PL), [1-(PL)]^[M(1/P)L] = [1-(M/Y)]Y.  Invert & expand: 
[1-(M/Y)]-Y = (1-Y) + (-Y)(1-Y-1)(-M/Y)/1! + 
(-Y)(- Y-1)(1-Y-2)[(-M/Y)2]/2! + (-Y)(-Y-1)(- Y-2)(1-Y-3)[(-M/Y)3]/3!... 
Limit for large Y of [1-(M/Y)]-Y = 1 +M/1! +M2/2! + M3/3! … 
Expand: eM = 1 + M/1! + M2/2! + M3/3! + M4/4! … 
Thus in the limit for large Y, [1-(M/Y)]-Y = eM 
So for large M/(PL), [1-(PL)]^[M(1/P)L] = [1-(M/Y)]Y = (1/e)M. 
24 dC/dY = d{1-[1-(M/Y)]Y}/dY = -Y[1-(M/Y)]Y-1 [-M(-1/Y2)] < 0 
25 =BinomDist(K, 256, 1/256, 0) gives 36.72% (K=0) so the chance of 
at least 1 success is 63.28%: 36.86% (K=1), 18.43% (K=2), 6.12% 
(K=3), 1.52% (K=4), 0.30% (K=5) and 0.05% (K=6).  

size L is more likely than getting no such runs  when N 
= 1/P.  Can we say anything else about exactly 1 run? 

The chance of exactly 1 success with probability P for 
N tries where N = 1/P is greater26 than that for N = 
1/P+1 and greater27 than that for N = 1/P-1 for K > 1.  If 
K = 1 the distribution has two equal modes so the 
chance of exactly 1 run of successes (K = 1) with prob-
ability P in N tries is most likely when N = 1/P.28  If K = 
0, the distribution has 1 mode  

The quantitative form of the Law of Very Large Num-
bers says, If the chance of a success is P and if N = 1/P, 
then there is at least a 63% chance (it is more likely 
than not) that there will be at least 1 success and it is 
“most likely” that there will be exactly one success.   

2.4B   More Combinations using Smaller Samples 

If N is the number of macro-tires (the number of sets of 
size L) and if n is the number of micro-tries, then in the 
aforementioned, n = N.L: 256.8 = 2,048. 

A quicker way is to make N+L-1 micro tries and treat 
adjacent tries as overlapping series: 1 to L, 2 to L+1, 
etc. so n = N+L-1 = 263.  See Schilling (1990). 

A still quicker way is to make less than N micro-tries29 
by using the combinatorial technique featured in the 
birthday problem to obtain N different paths of length L 
where N = (1/p)L.  While this approach requires fewer 
micro-tries, it is more difficult to explain.  

2.5. Regression to the Mean 
‘Regression to the mean’ occurs when the extremes on 
a test tend to move closer to the mean on a retest.  The 
regression fallacy is to claim there is always an exter-
nal determinate cause for the regression effect.  An 
alternate explanation is that some of the extremes (good 
or bad) on a test are due to chance and cannot be repli-
cated.  Evidence for this is that some of the extremes on 
the retest were further from the mean than on their 
original test so we can’t expect them to replicate.   

2.6. Trojan Numbers 
In Greek mythology, a large wooden horse was used as 
a ruse to enter Troy.  Thus, calling something a ‘Trojan’ 
means, “this is not what it seems.”  In statistics, there 

                                                           
26 C(K|N=(1/P)+1, P) = {[(1/P)+1]!/[K![(1/P)+1-K]!]}PK(1-P)[(1/P)+1-K]  
C(K|N=1/P, P) = {(1/P)!/[K![(1/P)-K]!]}PK(1-P)[(1/P)-K].   
C[K|N=1/P+1]/C[K|N=1/P]=[{[(1/P)+1]!/[(1/P)+1-K]!]}(1-P)[(1/P)+1-K]] 
/ [{(1/P)!/[(1/P)-K]!]}(1-P)[(1/P)-K]] = {[(1/P)+1]/[(1/P)+1-K]}(1-P)  
= (1+P)(1-P)/{1 + P + P.K) < 1 for all K > 0. 
27 C(K|N=1/P, P) = {(1/P)!/[K![(1/P)-K]!]}PK(1-P)[(1/P)-K].  
C(K|N=(1/P)-1, P) = {[(1/P)-1]!/[K![(1/P)-1-K]!]}PK(1-P)[(1/P)-1-K] 
C(K|N=1/P,P) / C[K|N=(1/P)-1, P) = [{(1/P)!/[(1/P)-K]!]}(1-P)[(1/P)-K]] 
/ [{[(1/P)-1]!/ [(1/P)-1-K]!]}(1-P)[(1/P)-1-K]]= {(1/P)/[(1/P)-K]} / (1-P)-1 
=(1-P)/{P[(1/P)-K]}=(1-P)/(1-KP). GT/EQ/LT 1 for K GT/EQ/LT 1. 
28 This is true in the strongest sense for K > 1 and true in a weaker 
sense (no other value of N has a higher probability) for K = 1.   
29 C = n!/[L!(n-L)!} < nL.  If C = (1/p)L then n < 1/p.  
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are two kinds of Trojan Numbers.30  One is where the 
small margin of error for a large sample is taken to be 
the margin of error for a small subset.  The other is 
where a large size sample with a rare outcome is pre-
sumed to have a small margin of error.  

The formula for standard error involving proportions is 
√[P(1-P)/N].  For small P, this is √[P/N].  The number 
of expected successes, K, is given by K = P.N, so this 
standard error is P/√K.  For a rare event, the standard 
error is determined entirely by K (the number of suc-
cesses) – not by N (the size of the sample).  This is why 
sample size can be considered a Trojan Number when 
dealing with percentages and rates.  If K is 36, the stan-
dard error (P/6) is 1/6th the expected value (P).  Thus, K 
> 30 is a good rule of thumb for rare events.  

2.7. Long-run, Large-sample Bias 
In the long run or in larger samples, the sample mean is 
expected to equal the population mean. But what is 
expected is not necessarily most likely.31  When the 
population mode is different from the mean, then long-
run, large-sample bias is expecting that a small sample 
mean is most likely to equal the population mean when 
in fact it is more likely to equal the population mode 
and to move toward the population mean as more data 
is collected.  (Brooks, 2004, Phone conversation).  

2.8. Informal Statistical Inference 
Being “statistically significant” (6.8) is a most common 
sign of statistical inference.  But many news stories 
don’t say if the data is from a sample and if so don’t use 
this phrase or give the sample size or p-value.  To 
evaluate statistical significance, students need simple 
sufficient conditions.  See Harradine (2004) and 
Pfannkuch & Horring (2004).  Here are some rules:  

The difference in sample means is statistically signifi-
cant if the data from two random samples has no over-
lap, if the boxes (25th to 75th percentiles) in two box 
plots32 do not overlap and the sample size > 9, if the 
boxes overlap but n > 9 [(IQR of larger box) / (differ-
ence in means)]2 or if n > 9 [(larger range) / (difference 
in means)]2 since Range > IQR.   

The difference in sample means is statistically signifi-
cant33 if n > 16/ES2 where Effect Size (ES) is the dif-
ference in means / pooled standard deviation.  

                                                           
30 John Brignell (2004, p. 54) introduced “Trojan Numbers”.  
31 Consider 90% group 1 (value = 100) and 10% group 2 (value = 
200) so population mean is 110.  For n < 10, we don’t expect any-
thing from group 2, so a sample mean of 100 (pop. mode & median) 
is most likely. For n > 10, a sample mean of 110 is most likely.  
32 Std. normal: z(75th percentile) = 0.67 so StdDev = 1.33.IQR/2 and 
StdErr = 1.33(IQR/2)/√n.  If DM = difference in means then differ-
ence is statistically significant (2.SE < DM/2), if √n > 3.IQR/dM or n 
> [3.IQR/dM]2.  If just touching, then DM = IQR so true for n > 9.  
33 Statistically significant if 2SE < DM/2.  SE = DM/(ES√n). 

The difference in sample means is statistically signifi-
cant if n > 9 and the median overlap (percentage of one 
distribution beyond mean of other) > 25%.34  See 
Herrnstein and Murray 1994.  

Replacing 9 and 16 with 30 would handle most sample 
variation in IQR, StdDev and tail probability for non-
normal populations and 30 is more memorable. 

2.9. Formal Statistical Inference 
Schield (2004b) argued that statistical significance can 
be taught very quickly by focusing on the lack of over-
lap for conservative confidence intervals for propor-
tions where SE = 1/√(2n).35  Confounder influence on 
statistical significance (4.5) is important.  Schield 
(2004b) presented a graph (Figure 2) that showed how a 
confounder could make a statistically-significant asso-
ciation become insignificant (or vice versa).   

Figure 2: Confounder Influence on Significance 
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2.10. Bayesian View of Confidence 
Confidence intervals (6.4), margin of error (6.4) and 
confidence level (6.2) are common in everyday usage.36  
But some students think that a 95% confidence interval 
has a 95% chance of including the population parame-
ter.  A Frequentist would say this is true for a future 
randomly-selected 95% confidence interval but not for 
an already-selected 95% confidence interval. 

Schield (1997) argued that from a decision-making or 
Bayesian perspective one should regard a Frequentist 
confidence as the chance of winning a bet about 

                                                           
34  InvNorm(-0.67) = 25% so DM = 1.34 = IQR and n = 9.  
35 While touching 95% confidence intervals have p-value < 5%, the 
difference in means is still statistically significant at the 5% level. 
36 Confidence intervals must be distinguished from prediction inter-
vals while standard error and margin or error must be distinguished 
from standard deviation.  Consider this misuse.  “from sixty eight 
different "scientific" uniformitarian measurements…”   “we come to a 
mean age for the earth of about 30 (32.7) million years with a stan-
dard deviation of approximately 100 (99.0) million years.  … we can 
be confident that the true age of the earth will lie within approxi-
mately two standard deviations on either side of our statistical 
mean....  we can be virtually sure the true age of the earth should be 
somewhere between zero and 230 million years.” 
www.createleaders.org/chronicles/chronicles1999/Earthsage.html 
Comment: The standard error is really 12 M years so the 95% confi-
dence interval for this non-random data is 30 ± 24 million years. 
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whether a fixed confidence interval contains a fixed 
population parameter give no prior knowledge.   

It seems professionally negligent not to tell students 
how they should act when given a 95% confidence 
interval.  Although true, it is not helpful to say, “This 
confidence interval either does or does not contain the 
fixed population parameter” while simultaneously say-
ing in a three-door problem “The fixed prize has one 
chance in three of being behind any of three doors.”   

2.11. Bayesian View of Significance 
Statistically significant” and “significant difference” 
(6.8) are more common then p-value (6.0), “reject the 
null” (5.3) or “accept the alternate” (4.5).  “Statistically 
significant” means the data is unlikely to occur if due 
just to chance.  “Rejecting the null” means the null is 
unlikely to be true given unlikely data.37  Is being statis-
tically significant logically sufficient to reject the null?  
If not38, then determining a criterion for rejecting the 
null may involve Bayesian thinking.   

2.11.1  Sampling from One of Two Distributions 

Schield (1996) investigated sampling from overlapping 
distributions named Null and Alternate.  The null hy-
pothesis is that a given sample came from the Null 
distribution.  The cutoff value used to reject the null 
hypothesis was chosen so alpha = beta.39  If the null and 
alternate have equal standard errors then the cutoff is 
midway between the means.40 

P(Null) = percentage of all samples that are from the 
Null distribution.  P(Null|reject) = percentage of re-
jected samples that are Null.  P(reject|Null) = percent-
age of Null samples that are rejected = Alpha.   

Suppose the Null and Alternate are equally likely, 
P(null) = 50% in Figure 3, and the null is rejected. 

Figure 3: Sampling Distributions. Equally likely 
µ = 0
Null

µ = 2
Alternate

Type 1Type 2

0 1 2 3

rejection region

Cutoff

-1-2  
Then the percentage of rejected samples that are null, 
P(Null|reject), will equal the percentage of null samples 
that are rejected, P(reject|Null) or alpha (Type 1 error as 
a percentage of all samples from the null distribution). 

                                                           
37 Students must be familiar with “reject the null,” distinguish “fail to 
reject the null” and “accept the null,” and distinguish “statistically-
significant risk factor” from “significant risk factor.” 
38 Let P = Null is true.  Let Q = some outcomes (z < |2|) are likely.  
This argument seems of the form, “If P then Q.  -Q.  Therefore -P.” 
But this form wouldn't fit if Q and -Q are not logical opposites or if 
the alternate is not the logical opposite of the null.  
39 Given a cutoff, alpha is the chance of Type 1 error given the null is 
true, beta is the chance of Type 2 error given the alternate is true.   
40 C = Cutoff.  Assume SE are equal.  Alpha = P(z>C|µ=0), Beta = 
P(z<µA-CA | µ=µA).   If Alpha = Beta, CA = C = µA/2.  P(Null|data) = 
P(null).P(z<µA/2|µ=0)/[P(null).P(z<µA/2|µ=0)+P(alt).P(z<µA/2|µ=µA)] 

If the Alternate is less likely than the Null, P(Null) > 
50% (Figure 4), then the percentage of rejected samples 
that are Null, P(Null|reject), will be larger than alpha.41   

Figure 4: Sampling Distributions. Alternate Less likely 
µ = 0
Null

Alternate
µ = 2

Type 1Type 2

0 1 2 3

rejection region

Cutoff

-1-2  
These results can be summarized in 2x2 tables. 

Table 4: Sampling from One of Two Distributions 
 Alt Null ALL   Alt Null ALL 
Reject  P(R|N)   Reject  P(N|R) 100% 
Not Beta    Not   100% 
ALL 100% 100% 100%  ALL P(alt) P(null) 100% 

Although the names are suggestive, this is still Frequen-
tist reasoning.  Using Bayes rule, it follows that: 

Eq. 7: P(Null | reject) = Alpha {P(null) /  
   {[Alpha.P(Null)]+[1-P(Null)][1-Alpha]} 

If reject and P(null) < ½, P(null | reject) < alpha.   
If reject and P(null) = ½, P(null | reject) = alpha.   
If reject and P(null) > ½, P(null | reject) > alpha.  

If alpha is 5%, the following pairs give the prior chance 
the Null is true and the posterior chance the Null is true 
when the Null is rejected: (1%, 0.1%), (50%, 5%) and 
(99%, 84%).  Only if P(null) ≤ 50% can we reject the 
Null when P(reject|null) ≤ 5% (Frequentist) and 
P(Null|reject) ≤ 5% (Bayesian).  Figure 5 shows this 
relationship for an alpha of 5%. 

Figure 5: Probability (Null | Reject, alpha = 5% 
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From Eq. 7, one can determine the alpha needed to 
obtain a given posterior probability for the truth of the 
null given the data.42  Eq. 8 identifies the alpha needed 
to obtain a 5% posterior probability: P(null|reject)=5%.  

Eq. 8: Alpha = 5%.[1-P(Null)] 
/ {5%.[1-P(Null)] + 95%.P(Null)]} 

                                                           
41 The height of the alternate is less than that of the null to illustrate 
that P(Alternate) < P(null).   
42 Eq 3b, Schield (1996): P(data | Null) = {P(Null | data).[1-P(Null)]}  

 / {P(Null | data).[1-P(Null)] + [1-P(Null | data)].P(Null)} 
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Alpha decreases very rapidly as the chance that the 
alternate is true approaches zero.43  If the alternate is 
unlikely and if rejection requires the null has no more 
than a 5% chance of being true (Bayesian), then the 
alpha required is approximately 5% times the prior 
chance the alternate is true.44   

2.11.2  Application to Statistical Significance 

Schield (1996, 1998) argued that this Frequentist model 
serves as a suitable Bayesian view of statistical tests.  
Gonen et al. (2005) argued similarly for a Bayesian 
Two-Sample t Test using a more complex model.   
From a Frequentist perspective, this move is unjusti-
fied.  If the truth or falsity of the null is a fact then there 
is no Frequentist probability that the null is true.  But 
given the increasing use of significance tests involving 
alternates whose efficacy is unknown or unlikely, Fre-
quentists may be motivated to present a Bayesian view 
hypothetically saying “If hypothesis testing were simi-
lar to identifying which of two distributions was the 
source for a random sample…”  Consider the benefits.  

First, this model is consistent with the Principal Princi-
ple: that Frequentist and Bayesian analyses will give 
similar answers when one has no other information on 
the matter – when the prior is uninformative (the null 
and alternate are equally likely).  See Schield (1997) 
and Aitkin (1991, 1998).  In this model if the prior 
chance of the null being true is 50%, then the posterior 
chance of the null being true on rejection will be alpha.  

Second, this model provides qualified support for 
Fisher’s Rejection Rule: reject the null when the p-
value is less than 5%. When R. A. Fisher formulated 
hypothesis testing, horticulturalists had good reasons to 
think the effects were more likely due to the treatment 
than to chance (Pnull < 50%) so Fisher’s rule works. 

Third, this model identifies conditions where using 
Fisher’s Rejection rule is inappropriate.  Today hy-
pothesis testing evaluates the influence of treatments or 
exposures that seem less likely to be true than is the 
null: Pnull > 50%.  In these cases, rejecting the null 
using Fisher’s guideline means doing so when the pos-
terior chance the null is true given data to reject is 
greater than 5%.45 This is Lindley’s paradox: when 
Bayesian and Frequentist tests result in contradictive 
evidence.  (See Shafer, 1982 and Jefferys, 1995.) 

A Bayesian rejection rule would be to reject the null 
only when the sample statistic is ‘95% Bayes’ signifi-
cant’: P(Alternate | Data) ≥ 95%.  If rejection is justi-
fied only when the result is ‘Bayesian significant’, then 

                                                           
43 If P(Alternate|reject) = 95%, then these pairs relate P(alternate) and 
alpha: (50%, 5%), (10%, 0.58%), (1%, 0.053%), (0.1%, 0.0053%).    
44 If P(Alternate) << 1, then per Eq. 8 alpha ~ 5%.P(Alternate). 
45 It would seem that the smaller the p-value, then the greater the 
evidence for rejecting the null.  This is true if the sample size is 
increased but not necessarily true if the null and alternate vary.  

this simple model shows that being ‘statistically signifi-
cant’ is not sufficient to be ‘Bayes significant.’   

Schield (1998) recommended presenting the prior 
needed to reject the null with a 95% Bayes’ confidence 
in the same way Frequentists present a p-value.46 

If Frequentist hypothesis testing is to be influenced by 
Bayesian reasoning, then a first step might be to restrict 
Fisher’s rule for rejecting the null hypothesis to those 
cases where the alternate is more likely than the null.47  
This might prevent some of the results in section 2.2 
from being touted as being “statistically significant.”  

2.12. Significance for Rare Events 
John Brignell (2000) claimed a relative risk must be at 
least 2 to be statistically significant for rare outcomes.  
Assume that RR = 1 in the population so that the 
chance of the desired outcome is the same in both expo-
sure and control groups.  Assume that we randomly 
sample for just the exposure group so the mean of the 
control group is the same as that in the population.  
Assume the outcome of interest is rare (P<< 1%) and 
that the sample sizes (N) are quite large, so the number 
of outcomes expected (K) is greater than 1 since 
K=N•P.  In this case, the frequency of rare events is 
Poisson.  The variance of the Poisson equals the ex-
pected value (K).  The standard deviation (SE of the 
distribution) is the square root of the variance: √K. The 
upper limit of a 95% confidence interval is the mean 
(the # expected) plus 2 standard deviations (SE).  This 
is [K + 2√K].  In risk, the upper limit is P + 2√(P/N) 

Assuming N1 in the test group and N0 in the control 
(where P1=P0=P), the resulting relative risk due to 
chance is [P + 2√(P/N1)]/P = 1+2√[1/(P.N1)] = 1+2/√K.  
For K=4, the ratio is 2.  This rule may apply for larger 
K since we excluded variation in the control group.48  
The argument is reversible.  If a relative risk of 1.2 is to 
be statistically significant then at least 100 events of 
interest are needed in the test group.  If the outcome 
prevalence is 1%, this requires 10,000 subjects.  

                                                           
46 Mathews (1999) used a similar criterion, a 95% confidence that null 
is false, but added sampling from a distribution.  .  Assuming a 50% 
chance the alternate is a fluke (where the alternate is distributed 
uniformly), gave a two-tailed probability of 17% that the null is true 
given the data for a p-value of 5%.  Mathews proposed a new criteria 
for significance: “no suggestion of significance should be made 
unless Pr(Fluke | data) < 0.05.”  Mathews Home Page: 
http://ourworld.compuserve.com/homepages/rajm/ 
47 This seems less adventuresome than banning “statistically signifi-
cant” (Mathews) or introducing another term (‘Bayes significant’). 
48 “It can be roughly reckoned that statistical variation will dominate 
for small samples, while confounding factors dominate for larger 
samples.  In either case the minimum risk ratio that can be remotely 
acceptable is 2.0.”  P. 103. “…real scientists never accept an RR < 2.”  
P. 102.  See www.numberwatch.co.uk/2002%20July.htm 
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3. Work Needed 
More work is needed to identify the role of chance in 
everyday arguments: in betting and insurance (c.f., the 
chance of ruin), in decision making (c.f., the value of 
perfect information) and in describing the chance an 
outcome is “clinically significant.”49   Work is needed 
on the possible influence of chance on the Lhotka curve 
(Murray, 2003), on Benford’s law (Brooks, 2002) and 
on the extreme values of a distribution such as floods, 
peak temperatures and winners (Brignell, 2004). 
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Appendix A:  Chance-Related Web Hits (Yahoo) 
Log10 of 300 Yahoo hits (9/2005):  the (10.0), can (9.6), may (9.5), could (9.2), 
possible (8.9), might (8.9), "due to" (8.7), certain (8.7), statistics (8.7), chance (8.6), 
risk (8.6), likely (8.6), random (8.5), life chance (8.2), luck (8.2), impossible (8.2), 
confidence (8.2), accident (8.2), possibility (8.1), percentage (8.1), love chance (8.1), 
gambling (8.1), lottery (8.0), odds (8.0), games chance (8.0), sports chance (8.0), 
statistical (7.9), astrology (7.9), betting (7.9), weather chance (7.9), unlikely (7.9), 
death chance (7.8), "likely to be" (7.8), variation (7.8), God chance (7.7), risk chance 
(7.7), ESP (7.7), psychic (7.7), probability (7.6), Tarot (7.6), probable (7.6), uncer-
tainty (7.6), uncertain (7.5), insurance chance (7.5), incidence (7.5), likelihood (7.5), 
accidentally (7.5), prophecy (7.5), accidental (7.4), UFO (7.4), religion chance (7.4), 
random chance (7.4), hypothesis (7.4), statistics chance (7.4), forecasting (7.3), 
certainty (7.3), accident chance (7.3), coincidence (7.3), prevalent (7.3), variance 
(7.2), paranormal (7.2), disaster chance (7.2), fortune chance (7.2), evolution chance 
(7.2), research hypothesis (7.2), chaos chance (7.2), bible chance (7.1), gambling 
chance (7.1), prayer chance (7.1), lottery chance (7.1), betting chance (7.0), risk 
probability (7.0), due random chance (7.0), "by accident" (7.0), conspiracy chance 
(7.0), improbable (7.0), ESP tests (6.9), ruin chance (6.9), conceivable (6.9), chance 
probability (6.9), "intelligent design" (6.9), "by chance" (6.9), "unlikely to be" (6.9), 
"risk factor" (6.8), bible statistics (6.8), "chaos theory" (6.8), death probability (6.8), 
"significant difference" (6.8), "standard deviation" (6.8), "statistically significant" 
(6.8), aliens chance (6.8), prediction chance (6.8), randomness (6.7), coincidence 
chance (6.7), insurance probability (6.7), inconceivable (6.7), sports probability (6.7), 
weather probability (6.7), love probability (6.7), extraterrestrial (6.7), impossibility 
(6.7), "random number" (6.7), horoscope chance (6.7), psychic test (6.7), religion 
probability (6.6), truth probability (6.6), astrology test (6.6), psychic chance (6.6), 
evolution probability (6.6), chaos accident (6.6), God probability (6.6), ESP chance 
(6.5), prophecy chance (6.5), confounding (6.5), "to chance" (6.5), prediction prob-
ability (6.5), religion coincidence (6.5), "global warming" chance (6.5), "confidence 
interval" (6.4), astrology chance (6.4), "standard error" (6.4), UFO chance (6.4), 
"margin of error" (6.4), "random sample" (6.4), accident probability (6.4), gambling 
probability (6.3), disaster probability (6.3), betting probability (6.3), synchronicity 
(6.3), polygraph (6.3), "random number generator" (6.3), "analysis of variance" (6.3), 
"relative risk' (6.3), "statistical significance" (6.3), "T test" (6.3), evolution coinci-
dence (6.2), "normal distribution" (6.2), paranormal chance (6.2), paranormal test 
(6.2), bible probability (6.2), forecasting chance (6.2), fortune probability (6.2), 
"sampling error" (6.2), "random selection" (6.2), "fat chance" (6.2), superstition 
chance (6.2), chaos probability (6.2), "lie detector" (6.2), "confidence level" (6.2), 
"fortune telling" (6.2), chaos coincidence (6.1), "intelligent design" chance (6.1), 
forecasting probability (6.1), pseudoscience (6.1), "random variables" (6.1), "random 
walk" (6.1), biorhythm (6.0), "statistically improbable" (6.0), "random sampling" 
(6.0), "p-value" (6.0), conspiracy probability (6.0), "null hypothesis" (6.0), "by 
coincidence" (6.0), "statistical association" (6.0), "small chance' (6.0), prayer prob-
ability (6.0), "if by chance" (6.0), polygraph test (6.0), "student test" (6.0), "intelligent 
design" test (5.9), ruin probability (5.9), "just a coincidence" (5.9), "statistical 
inference" (5.9), coincidence probability (5.9), "bible codes" chance (5.9), "lie 
detector" test (5.9), chaos coincidence chance (5.9), extraterrestrial chance (5.8), 
"random events" (5.8), "by luck" (5.8), "conditional probability" (5.7), "non-random" 
(5.7), "significance level" (5.7), aliens probability (5.7), "significant association" 
(5.7), "statistical tests" (5.7), prophecy probability (5.7), "mere coincidence" (5.6), 
"random chance" (5.6), "working hypothesis" (5.6), reject null hypothesis (5.6), 
psychic probability (5.6), "binomial distribution" (5.6), synchronicity chance (5.6), 
"random assignment" (5.6), "alternative hypothesis" (5.6), "just coincidence" (5.5), 
"strange coincidence" (5.5), superstition probability (5.5), "statistically insignificant" 
(5.5), "bible codes" (5.5), "random error" (5.5), "variance analysis" (5.5), "random 
sequence" (5.5), astrology probability (5.4), "lie detector" chance (5.4), "sampling 
distribution" (5.4), "due to chance" (5.4), polygraph chance (5.4), "significant result" 
(5.4), "extrasensory perception" (5.3), "reject the null" (5.3), "significant risk factor" 
(5.3), F-test (5.3), "fortune telling" chance (5.3), "than chance" (5.3), UFO probability 
(5.3), pseudoscience chance (5.3), "intelligent design" probability (5.3), extraterres-
trial probability (5.3), "likely to be due to" (5.3), paranormal probability (5.2), "weird 
coincidence" (5.2), "due to accident" (5.2), "happen by chance" (5.1), "research 
hypothesis" (5.1), "statistical control" (5.1), "chi-squared test" (5.0), "occur by 
chance" (5.0), "result of chance" (4.9), "two sample test" (4.9), pseudoscience 
probability (4.9), "chance event" (4.9), "plausible hypothesis" (4.8), "better than 
chance" (4.8), "unlikely to be due to" (4.8), synchronicity probability (4.8), "due to 
luck" (4.8), "prediction interval" (4.7), biorhythm chance (4.7), "birthday problem"  
(4.7), "freak occurrence" (4.7), "statistically impossible" (4.7), "sample statistic" (4.7), 
"type 1 error" (4.6), "type 2 error" (4.6), "not just a coincidence" (4.5), "lie detector" 
probability (4.5), "not due to chance" (4.5), “accept the alternative” (4.5), "fail to 
reject the null" (4.5), "statistically unlikely" (4.5), "doesn't happen by chance" (4.4), 
"fortune telling" probability (4.3), "freak event" (4.2), "accept the null" (4.2), "due to 
chance alone" (4.1), "because of chance" (4.0), "due to sampling error" (4.0), "due to 
random chance" (4.0), "due to coincidence" (3.8), "non-random sample" (3.7), "due to 
randomness" (3.6), "likely due to chance" (3.6), "reject the alternative" (3.6), "simply 
due to chance" (3.6), "just due to chance" (3.5), "due to random error" (3.5), "not 
likely due to chance" (3.4), "test of randomness" (3.4), "to be due to chance" (3.3), 
"bible codes" probability (3.2), "to happen by chance" (3.2), "by means of chance" 
(3.2), "due merely to chance" (3.1), "accept the alternate" (3.1), "purely due to 
chance" (3.0), "unlikely to be due to chance" (3.0), "merely due to chance" (3.0), "due 
only to chance" (2.9), "accounted for by chance" (2.8), "unlikely to happen by 
chance" (2.8), "due purely to chance" (2.8), "reject the alternate" (2.8), "unlikely due 
to chance" (2.7), "due simply to chance" (2.7), "only due to chance" (2.7), "due just to 
chance" (2.6), "unlikely by chance" (2.1), the (10.0), "if due to chance" (1.3), "due 
purely to random chance" (1.1), "unlikely if due to chance" (0.8), "due just to luck" 
(0.3), "due only to randomness" (0.3), "due simply to randomness" (0.0)  
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