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1. Abstract

When estimating causal effects from observational data,
it is desirable to replicate a randomized experiment as
closely as possible, for example, by obtaining treated
and control groups with extremely similar distributions
of observed covariates. This goal can often be achieved
by choosing a subsample from the original control group
that matches the treatment group on the distribution of
these covariates, thus reducing bias due to these co-
variates. However, sometimes the original sample of
control units cannot provide adequate matches for the
treated units. In these cases, it may be desirable to obtain
matched controls from multiple control groups. Multiple
control groups have been used to test for hidden biases in
causal inference (e.g., Rosenbaum 2002); however, lit-
tle work has been done on their use in matching or for
adjusting for biases, such as potential systematic differ-
ences between the original control group and supplemen-
tal control groups beyond that which can be explained
by observed covariates. Here we present a method that
uses matches from multiple control groups and adjusts
for potentially unobserved differences between the addi-
tional control groups and the original control group in
the analysis of the outcome. The method is illustrated
and evaluated using simulated data as well as data from
an evaluation of a school dropout prevention program,
which utilizes both local and non-local matches.

2. Introduction

2.1 Matched Sampling in Observational Studies

Matching methods, used in the context of causal infer-
ence to select groups of treated and control units with
similar values of background covariates, have been re-
ceiving increasing attention over the last few decades in
fields such as statistics (e.g., Rubin, 1973a; Rosenbaum,

2002), economics (e.g., Dehejia and Wahba, 1999; Im-
bens, 2004), political science (e.g., Imai and van Dyk,
2004), sociology (e.g., Smith, 1997), and medicine (e.g.,
Christakis and Iwashyna, 2003). The general scenario
involves selecting well matched subsets of units from
the original treated and control groups to reduce bias
due to those covariates when estimating the treatment ef-
fect. However, in some settings, there may be interest
in combining information from multiple control groups,
for example: randomized experiments in which it is diffi-
cult or expensive to form a large control group, but there
are reliable historical patient data or a national disease
registry of relevant data to supplement the randomized
controls; or settings where the original control group
does not contain enough units who look similar on ob-
served covariates to those in the treated group, as in the
motivating example of this paper, described in Section
2.4. When there are multiple control groups available,
it may be wise to utilize good matches from each of
these groups, while simultaneously accounting for po-
tential differences between them in unobserved covari-
ates. For example, when utilizing historical data to sup-
plement a current randomized clinical trial, researchers
may want to account for unobserved differences due to
temporal changes. Here we consider situations with two
control groups and find well-matched units from both
groups in order to estimate, and thereby adjust for, sim-
ple unobserved differences between the control groups.
Specifically, because the potential outcome under con-
trol, Y (0), is observed in both control groups, the differ-
ence inY (0) between well-matched units from the two
control groups can be used to try to adjust for differences
between these groups on unobserved covariates when an-
alyzing the treated and matched control data.

The paper proceeds as follows. The general frame-
work of causal inference is reviewed in Section 2.2, fol-
lowed by a summary of previous uses of multiple con-
trol groups in Section 2.3, and a description of the moti-
vating example, the evaluation of a school dropout pre-
vention program (the SDDAP) in Section 2.4. Section
3 describes a matching method for use with two control
groups, including an approximation for the optimal num-
ber of matches to obtain from each control group. Sec-
tion 4 provides a description of the matching adjustment
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Figure 1: Adjustment scenario

procedure. Sections 5 and 6 present evaluations of the
method, Section 5 using simulated data, and Section 6 in
the SDDAP setting. Finally, Section 7 concludes.

2.2 Conceptual Framework

We consider an observational study or randomized exper-
iment with one group that received the treatment of inter-
est and two (or more) control groups that did not. A col-
lection of covariates,X, is observed in all groups. The
goal is to choose subsamples from the original control
groups that match the treatment group onX, thereby re-
ducing bias in the estimated treatment effect due to those
covariates. We assume that interest focuses on estimat-
ing the average treatment effect in the full treated group,
and thus the matching is allowed to discard “irrelevant”
members of the control groups, but the full treated group
is retained.

Causal effects inherently involve a comparison of po-
tential outcomes under different treatments on a common
set of units. For each individual uniti, we observe either
Yi(1), the potential outcome under treatment, orYi(0),
the potential outcome under control, depending on treat-
ment assignment. Because we are interested in estimat-
ing the effect of the treatment for the full treated group,
we would effectively like to impute each treated unit’s
potential outcome under control. To do so, we seek con-
trol units who look similar to the treated units on all co-
variates, thereby effectively modeling the potential out-
comes for the treated if they were exposed to the control.
The matching is often done using the propensity score
(Rosenbaum and Rubin (1983)), which is the probability
of receiving the treatment given the observed covariates.

The situation we consider is illustrated in Figure 1,
with univariateX, where there is limited overlap be-

tween the treated group and control group one (two stan-
dard deviations difference between the means in this hy-
pothetical example): The region ofX between the two
vertical lines atX = 0 andX = 4 indicates values of
X where there is reasonable overlap between the treated
group and control group one–the original control group,
and between these groups and control group two. For
individuals in the treated group withX values greater
than about 0, there is a good match from control group
one. However, for individuals in the treated group with
X values less than about 0, there are few or no appropri-
ate matches from control group one. Those individuals
will, instead, be matched to control group two, which
has good overlap with the treated group over the fullX
distribution. However, by assumption the difference be-
tween the treated group and control group one is cap-
tured byX, but the difference between control group
two and the other two groups is not captured by theX
covariates (e.g., the treated and original control group
are from the same geographical region, whereas con-
trol group two is from another region). Thus, control
group one exactly matches the treated group on area-
level covariates but does not have good overlap with that
group on individual-level covariates. In contrast, control
group two has good overlap with the treated group on
the individual-level covariates, but is not from the same
geographic area as the treated group. Our objective is
to form a single set of matched control units, with some
matches chosen from each of the two potential control
groups, in order to get the benefits of both control groups.

If we are willing to restrict estimation of the treatment
effect to the space ofX where there is sufficient over-
lap between the treated group and control group one,
for example, above about 0 or 1 in Figure 1, then we
could simply utilize the few matches from control group
one that match to units in the treated group and discard
treated units without good matches from control group
one. However, in the setting of this article we are inter-
ested in estimating the treatment effect for the full range
of X values in the treated group, and we are not will-
ing to rely on extrapolation of the functional form of the
model forY (0) givenX in control group one to estimate
the treatment effect for treated units with values ofX
outside the range of control group one.

2.3 Previous Uses of Multiple Control Groups

There have been some previous uses of multiple con-
trol groups, generally in the context of testing for hid-
den bias. In particular, Campbell (1969) and Rosenbaum
(1987) discuss using multiple control groups to estimate
bounds on treatment effects, or to corroborate results by
assessing whether results obtained using multiple control
groups are as expected given additional available infor-
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mation.
Multiple control groups have often been utilized in

medicine, particularly through the use of historical con-
trols to supplement information from a randomized or
contemporaneous control group. Baker and Lindeman
(2001) use multiple control groups to examine the effect
of the availability of epidural anesthetic on the rate of
Cesarean sections. Using untreated historical patients to
provide information on long-term trends in the outcome
is illustrated in Shen and Fleming (1999) and Rubinet al.
(2003).

Rosenbaum (1987, 2002) provide a thorough exami-
nation of the use of multiple control groups, including
formal discussion of the possible benefits of using two
control groups, but he focuses on the use of multiple con-
trol groups to test for hidden bias. Rosenbaum stresses
that the value of a second source of controls depends crit-
ically on supplementary information that is available re-
garding unobserved biases that may exist. In particular,
when some of this supplementary information is avail-
able, a second source of control units can be used to test
the assumption of strongly ignorable treatment assign-
ment (Rosenbaum and Rubin (1983)), which states that
treatment assignment is independent of the potential out-
comes given the covariates. Essentially, if, after adjust-
ing for the observed covariates, the two control groups
differ with respect to the potential outcome under con-
trol, then the treatment assignment is not strongly ignor-
able, and at least one of the control groups is not com-
parable to the treated group. We extend that approach
by using the two control groups together in one analysis
to adjust explicitly for the “hidden” bias, rather than just
test for it, assuming that assignment to control group one
and the treatment group is strongly ignorable. In general,
if there is evidence under specified assumptions to test
for bias, that evidence can instead be used to improve
inference. This adjustment also relates to the ideas of
reference sampling or substitution sampling, where sam-
ples are taken at later points in time to compare to earlier
groups and thereby create adjustments (e.g., Rubin and
Zanutto (2002)).

2.4 The School Dropout Demonstration Assistance
Program

This paper was motivated by an applied problem,
in which the originally chosen control group has in-
sufficient covariate overlap with the treated groups.
The School Dropout Demonstration Assistance Program
(SDDAP) was an initiative operating between 1991 and
1996 in 85 schools, financed by the Department of Edu-
cation to determine effective strategies to reduce school
dropout. Here we focus on the “restructuring” programs,
which treated entire schools, putting in place structures

and services designed to affect all students in the school,
such as curriculum reform or expanded teacher train-
ing. As one example, the Grand Rapids, Michigan high
school restructuring effort was to adopt a 9th grade pro-
gram organized around “family groups,” block schedul-
ing, and interdisciplinary themes, as well as student ser-
vices such as student advocates, social workers, and sub-
stance abuse specialists (Dynarskiet al. (1998); Agodini
and Dynarski (2004)). Five restructuring programs were
chosen to be part of the evaluation of program impacts;
these were located in Dallas, Grand Rapids, Philadel-
phia, Phoenix, and Santa Ana. A comparison school
in the same school district was chosen for each of these
schools. We concentrate on the restructuring program in
Grand Rapids, i.e., this will be our treatment group.

We focus on a subset of the covariates that were col-
lected: those deemed by Agodini and Dynarski (2004) to
be potentially related to baseline values of four outcomes
(dropping out, educational aspiration, absenteeism, and
self-esteem). These 32 covariates examined include risk
factors for dropping out, baseline test scores, educational
aspirations, and demographic information. Nearly one
third of these variables had a significant difference in
means between the students in the Grand Rapids restruc-
tured school and the students in the Grand Rapids com-
parison school at the 5% level, indicating that the stu-
dents in these schools are quite different from one an-
other.

Because there is limited covariate overlap between the
two groups, estimation of the unobserved potential out-
comes using standard methods would rely heavily on un-
derlying modeling assumptions, due to the extrapolation
that would be required. Standard matching methods also
would not be useful here, because there are an insuffi-
cient number of potential matches in the local compar-
ison school. To address this problem, we propose the
formation of a comparison “pseudo-school,” composed
of students from multiple comparison schools. One con-
trol group (C1) comprises children in the untreated lo-
cal comparison school chosen by the SDDAP evaluation.
A second control group (C2) comprises students in the
other comparison schools with reliable data (the com-
parison schools in Dallas, Phoenix, and Santa Ana). By
utilizing this second source of comparison students, we
can obtain better matches on the individualX covariates
than if we had to obtain matches from C1 for all of the
treated students. In particular, we address how to use in-
formation from both control sources: students from the
local comparison school, with relatively limited overlap
with the treated students on observed student-level co-
variates, and students who are close matches on these ob-
served covariates, but who are from non-local compari-
son schools, while accounting for potentially unobserved
differences between the local and non-local matched stu-
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dents.
Another possible way to use comparison students from

multiple schools would be to simply pool them all to-
gether into one large comparison group and estimate the
propensity score using the treated group and pooled com-
parison group, with an indicator variable for the area in
which each student lives included as a covariate. How-
ever, this will drive the propensity score specification in
an undesirable way, essentially allowing only matches
from the local area, especially if all of the treated group
is from one area and relatively few of the comparison
students are from that area, as is true in this example.
That is, in such cases, the propensity score will essen-
tially equal the indicator variable for local/non-local. We
would like to obtain exact matches on the area variable
when possible, but not at the expense of close matches on
all of the other covariates; in some sense we treat the area
indicator as a “special” matching variable. Because in-
cluding the area indicator in the propensity score model
will tend to result in perfect separation of the local and
non-local students on the estimated propensity score, it
is important that the area indicator not be included when
estimating the propensity score.

3. Trade-Offs Between the Two Control
Groups

3.1 Obtaining Matches From Both Control Groups

Perhaps the first question that arises is how to choose
the matches from the two control groups. Here we dis-
cuss “extended caliper matching,” which is related to the
ideas of caliper matching (Rubin (1976a); Rosenbaum
and Rubin (1983)). Stuart (2004) proposes an additional
method that fixes the proportion of matches from one
control group, but results in that work indicate that ex-
tended caliper matching has better performance, and thus
we discuss that method here.

In the SDDAP context, for each student in the restruc-
tured (treatment) school, if there is a local match within
a fixed caliper or “distance” (e.g., within 0.25 standard
deviations of the treated group’s propensity scores), the
closest local control student is chosen. If there are no
local matches within that distance caliper, then the clos-
est match from outside the district is taken. Different
calipers generate different numbers of local vs. non-
local matches. Large calipers indicate a preference for
local matches: As the caliper approaches infinity, a local
match is taken regardless of how close (or far apart) the
non-local matches are from the treated group. Smaller
calipers correspond to greater tolerance for non-local
matches because there will more often not be a local
match within a small caliper. At the extreme, a caliper
of 0 indicates that local matches have no priority; the
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Figure 2: Results from extended caliper matching

closest match is taken, regardless of which control group
it is from. Generally, the extended caliper matching pro-
cedure ensures that a match is chosen from outside the
district only when a close local match can not be found;
the external data set is utilized only as much as “neces-
sary,” while still ensuring close covariate matches on all
observed covariates.

The extended caliper matching method was imple-
mented using the SDDAP Grand Rapids High School
data using the one-dimensional deficient rank distance
defined by the estimated linear propensity score. The
propensity score was estimated using all 32 covariates
and all units from the treated group and both control
groups. Due to difficulties when including an area in-
dicator in the propensity score model, as discussed in
Section 2.4, for the propensity score estimation the units
from both control groups are pooled as if from one large
control group. There are theoretical reasons supporting
such pooling (Rubin and Stuart (2005)). The matching
results are summarized in Figure 2.

Matching performance is measured by the percent re-
duction in bias, defined for quantityB as100 ∗ Bm−Bf

Bf
,

whereBm is the bias in the matched samples andBf is
the bias in the full samples. The propensity score bias
between groups one and two is defined here ase1 − e2,
wheree represents the estimated propensity score. The
squared covariate bias between groups one and two is
defined as(X1 − X2)′Σ−1(X1 − X2), whereΣ is the
variance-covariance matrix ofX in the treated group.

As expected, the maximum bias reduction is obtained
with a caliper of 0, which takes the closest propen-
sity score match for each treated student, regardless of
whether the match is local or non-local. This results in
approximately55% of the matches from the local area,
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indicating that for approximately half of the students,
their “best match” is in the local comparison school, but
that there is also the need for some matches from outside
the local area to obtain well-matched samples overall.

In this example, the bias reduction decreases dramat-
ically for larger caliper sizes. Approximately95% re-
duction in squared bias (from 0.49 to 0.04) is obtained
when the caliper size is0, whereas for a caliper of half
of a standard deviation or larger, the reduction in squared
bias is less than20%. Calipers larger than0.5 of a stan-
dard deviation lead to essentially only local matches be-
ing chosen, which severely limits the bias reduction on
X that is possible.

3.2 Choosing the Caliper Size

We now turn to the question of how large the caliper
should be, i.e., how many matches to take from each con-
trol group? In the discussion of extended caliper match-
ing, the quality of the matches was assessed by taking
into account only the observed covariates. However, a
key concern may be that by including matches from out-
side the local area, we could be introducing bias due
to unobserved area-level covariates: Students in Grand
Rapids may be different from students in Dallas or Santa
Ana or Phoenix on some unobserved covariate such as
community attitudes about drop-outs. Assessing the rea-
sonable percent of matches from each group should thus
consider the possible introduction of bias that may result
from including matches from outside the local area. For
concreteness, we will discuss this issue in the context of
the SDDAP.

In particular, previous empirical research (Heckman
et al.(1998); Glazermanet al.(2003)) indicates that hav-
ing local area matches is very important for replicating
experimental results with observational data, at least in
the context of job training programs. Here we provide a
way to trade-off that importance with the importance of
obtaining close matches on individual-level covariates.
The trade-off involves asking questions such as “Would I
rather match a student from Grand Rapids to another stu-
dent from Grand Rapids who is vastly different from the
original student in terms of test scores and parents’ edu-
cation, or to a student from Dallas, who has very similar
test scores and parents’ education as the student of inter-
est?” We do not know the answer to this question; it is a
substantive question that depends on the applied setting
and requires the advice of experts. Here we provide a
way to make use of that expertise.

We also note that it is not necessarily unreasonable to
assume that there is no additional bias created by obtain-
ing matches from the second control group (for exam-
ple, by obtaining matches from outside the local area),
even in settings where area differences could be impor-

tant. For example, Dehejia and Wahba (1999) found that
they were able to well replicate the results from a ran-
domized experiment estimating the effect of a job train-
ing program in New Jersey using matched observational
national data sets (such as the Current Population Sur-
vey), which contain individuals from across the United
States, and presumably few, if any, from New Jersey in
the matched groups. Even though a priori one might ex-
pect that being in or out of New Jersey would be impor-
tant for predicting post-treatment earnings of New Jer-
sey trainees if they were not trained, in this evaluation,
obtaining close matches on the observed individual-level
covariates (such as income in the two years prior to the
study, race, marital status, years of education, etc.) re-
moved essentially all of the bias in the estimation of the
average treatment effect.

Operationally, the most obvious way to implement ex-
tended caliper matching would be to determine the op-
timal caliper size, given this trade-off between local and
non-local matches. However, for the theory and approx-
imations given below, we determine the optimal num-
ber of matches to obtain from control group one, rather
than the optimal caliper size. Once the optimal num-
ber of matches from control group one is estimated, the
caliper size can be adjusted accordingly. This is primar-
ily done for simplification of the calculations and ap-
proximations. Although papers such as Cochran and Ru-
bin (1973) have investigated the bias reduction possible
with varying caliper sizes (in the setting with one treated
group and one control group), the approximations in that
paper assume an infinite number of units in the control
group. Because we are interested in finite samples from
the treated group and control group one, those approxi-
mations are not useful for our setting.

3.3 Theoretical Setting

We begin by assuming that there is no effect of the treat-
ment:Yi(0) = Yi(1) = Yi for all individualsi, and con-
sider the standard regression set-up for individuali with
the expected value of the outcomeYi a linear combina-
tion of one individual level covariate,Xi, which could
be a scalar summary ofp covariates, such as the propen-
sity score, and an indicator for the area (or district, in the
SDDAP setting),Di, Di = 0/1 for local/non-local:

E(Yi|X, D) = βXi + δDi.

We consider the case with one treated group, two control
groups, and covariates normally distributed within each
group, whereµt represents the mean ofX in the treated
group,σ2

t is the variance ofX in the treated group, and
Nt is the sample size in the treated group. Analogous
notation holds in control groups one and two, indexed by
C1 andC2, respectively. All individuals in the treated
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group and control group one (the SDDAP local control
group) haveDi = 0, whereas all individuals in control
group two (the SDDAP non-local control group) have
Di = 1. We assume that control group two is infinite
in size, so that exact matches onX can be found from
that group for each of the treated group members. Let
m be the number of matches chosen from control group
one; we are interested in determining the optimal value
of m, for givenβ andδ.

The trade-off to consider is that obtaining close
matches onX may result in higher bias inD, and anal-
ogously, obtaining close matches onD may result in
higher bias inX. This trade-off is in fact often the case;
the non-local control group is used precisely because it
provides closer matches onX; however, those non-local
controls increase bias in the area indicatorD. Match-
ing with multiple control groups involves balancing these
two types of bias. In the scenario here, control group
two can provide exact matches onX for all of the treated
group units, but it may not be desirable to take all of the
matches from control group two because of unobserved
differences between control group two and the treated
group as well as control group one, represented byD.

Without loss of generality, we assume thatµt > µc1.
Then the matching will essentially match them students
with the smallest values ofX in the treated group to the
m students in control group one with the largest values
of X. The remainder of the matches (from control group
two, matched to the treated students with theNt − m
largest values ofX) will match the remaining treated
students’ covariate values exactly because control group
two is assumed to be infinite in size.

The expected bias in the estimated treatment effect,
∆ = Y t − Y mc, whereYt andYmc are the observed
outcomes in the treated and matched control group, is:

E(∆) = βE(Xt −Xmc) + δE(Dt −Dmc)

= βµt − β

(
m

Nt
µc1 +

m

Nt

π

4
σc1 log

(
Nc1

m

)

+
Nt −m

Nt
µt +

Nt −m

Nt

π

4
σt log

(
Nt

Nt −m

))

+δ

(
m−Nt

Nt

)
.

This formula uses the approximation for the tail expec-
tation of a univariate standard normal distribution from
Rubin (1976b),Ω(N, n) ≈ π

4 ln(N
n ). The value ofm

that minimizesE(∆) is the solution to the equation

log
(

(Nt −m)σt

mσc1

)
= A, (1)

whereA = 4
π (µt−µc1)+σc1−σt+ 4

π
δ
β−σc1 log(Nc1)+

σt log(Nt). If the variance ofX in the treated group
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Figure 3: SDDAP: Optimal percent local matches

is the same as the variance ofX in control group one
(σ2

t = σ2
c1), then mopt = Nt

1
1+(exp(A))1/σt

. Further

simplification is obtained ifσ2
t = σ2

c1 = 1, in which
casemopt = Nt

1

1+exp( 4
π (µt−µc1)+

4
π

δ
β +ln(

Nt
Nc1

))
. If the

variances ofX are not the same in the treated group and
control group one, then a constrained optimization algo-
rithm such as bisection (Lange (1999)) can be used to
estimate the optimalm.

Given a guess or estimate of theδ
β ratio, we can use the

formula in Equation (1) to estimate the optimal number
of matches from each of the two control groups. Simu-
lations to assess the performance of this approximation
are reported in Stuart (2004); even though the approxi-
mation assumes an infinite control group two, results in-
dicate that the approximation holds well even when the
control group two is only twice as large as the treated
group.

3.4 Choice ofm in SDDAP

For the SDDAP, we use the results in Section 3.3 to
estimate the optimal number of matches from the local
control group. Figure 3 shows the optimal percent local
matches for a range of values ofδ

β , whereX is the lin-
ear propensity score. If the area-level covariates are not
at all important in predicting the outcome (δ = 0), then
the optimal percent local matches is approximately45%,
which is quite close to the percent matches chosen from
the local area with a caliper of 0 (55%) from Section 3,
which essentially assumesδ = 0.

Ideally we would like for this plot to be fairly flat over
a range of plausible values ofδ

β , which would imply that
the estimates of the optimal percent local match would
not be too sensitive to mis-estimation of this ratio. This
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result would be especially important when, as in many
observational studies, there are many outcome variables
not perfectly correlated, and there is a desire to use the
same matched control group for all outcomes, to better
replicate the design of a randomized experiment. In the
SDDAP example shown in Figure 3, we see that the slope
is fairly steep for values ofδβ less than 1.5; however, this
will not be true for all data sets.

4. Adjusting for Differences Between the
Control Groups

After doing the matching, researchers may want to ad-
just for potential differences between the control groups
on unobserved variables; here we provide a procedure
for doing so. For this theoretical work, we consider a
setting with one observed individual-level covariateX
(which may be a function ofp covariates, such as the
propensity score), and the indicatorD, which represents
the area in which the student lives and distinguishes con-
trol groups one and two. Using a set-up similar to that
in Rubin (1973b), let the expected values of the potential
outcomesYi(0) andYi(1) have the following form for
individual i with valueXi of X andDi of D:

E(Yi(0)|X, D) = γc + V (Xi) + (δ0 + δ1Xi)Di, (2)

E(Yi(1)|X,D) = γt + V (Xi) + (δ0 + δ1Xi)Di, (3)

where V (X) is an unknown and generally non-linear
but monotone function ofX, common to bothY (0) and
Y (1). The true average treatment effect isτ = γt − γc

and this is the estimand of interest. We refer to these con-
ditional expectations as “response surfaces,” using the
terminology common in experimental design and used
in Cochran and Rubin (1973) and Rubin (1979), among
others.

The intuition behind this method can be seen in Fig-
ure 1, which illustrates the scenario for our theoretical
situation with one covariate (X). In Figure 1,δ = δ0

andδ1 = 0 so that there is a constant “district effect” be-
tween control groups one and two. Because the response
surfaces may differ in control groups one and two (as
seen in the two distinct parallel response lines in Figure
1), we will adjust the observed outcomes of the matches
from control group two by an estimate of the difference
between control groups one and two. That difference (δ)
is estimated using the group of units from control group
one who look most similar to the treated group (in theX-
space between the two vertical lines) and well-matched
units from control group two. The idea is to make the
outcomes for the matches from control group two look
as if they “could have been” from control group one.

The outlined procedure utilizes information from both
control groups and accounts for potentially unobserved

differences between these two groups, represented by
δ, in the region of the treatment group. The extended
matching algorithm described in Section 3 is used to se-
lect a set of units from control groups one and two who
look the most similar to the treated group. The potential
outcome under control is then imputed for each treated
unit. For treated units with a match from control group
one, that control unit’s outcome value is used. For treated
units with a match from control group two, the match’s
outcome is used, after the adjustment for the unobserved
difference between control groups one and two (δ). Mul-
tiple imputations of the potential outcomes under control
are created to account for the uncertainty in estimatingδ.
Appendix 6.2 provides details of the proposed matching
adjustment procedure, assuming a normally distributed
outcome variable.

The method is expected to work well even when the
overall relationship between the covariateX and the out-
come (V (x)) is non-linear. Whereas standard OLS ad-
justment assumes a linear relationship across the entire
X distribution in the treated and control groups, this
method assumes linearity only in the area of covariate
overlap between control groups one and two (used to es-
timateδ). However, the basic version of this method does
assume that there is no interaction betweenD andX;
that is,D is assumed to have the same effect across the
entireX distribution. Sensitivity to this assumption is
assessed in a set of simulations detailed in Section 5. Re-
sults in this paper indicate that the matching adjustment
method is not particularly sensitive to this assumption.

5. Evaluation of Proposed Adjustment
Method

5.1 Simulation Setting

Monte Carlo simulations were performed to assess the
performance of the matching adjustment described in
Section 4. The simulation setting is similar to that in Ru-
bin (1979) and Rubin and Thomas (2000), where match-
ing versus OLS are compared in a range of settings with
non-linear response surfaces. Here we present a sum-
mary of the setting and results.

Parallel but non-linear response surfaces were exam-
ined, with a single covariateX:

E(Yi(j)|Xi, Dj) = γ + eaXi + (δ0 + δ1Xi)Dj , (4)

for groupj, j =treated (t), control group one (c1), con-
trol group two (c2);Dt = Dc1 = 0; Dc2 = 1. The true
treatment effect is zero, which is no restriction when the
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treatment effect is additive. We also assume that there is
no bias due to any other unobserved covariates; the out-
come calculated for each individual is the mean response
of each subject conditional on the parameter values, co-
variates, and control group membership. The bias in the
proposed adjustment method can be seen most clearly by
examining mean responses only.

As earlier, assume that there areNt units in the treated
group with covariate distribution parameterized such that
Xt ∼ N(B/2, σ2

t ), and Nc1 units in control group
one with covariate distribution parameterized such that

Xc1 ∼ N(−B/2, σ2
c1), where σ2

t +σ2
c1

2 = 1. We again
assume that control group two is infinite in size so that
exact matches onX can be found from this group. Al-
though the assumption of an infinite control group two
is impossible to satisfy in practice, this setting can still
provide guidance for real-world situations because, if an
infinite second control group does not help much, then
it is unlikely that a second control group would provide
any real assistance in real-world settings with finite sam-
ple sizes and additional cost constraints that may make
it more expensive to obtain data from a second control
group. Section 6 considers the finite control group two
of the SDDAP.

The simulations varied the following parameters: the
difference between control groups one and two (δ1, and
without loss of generality,δ0 is set to 1), the treated group
sample size (Nt), the ratio of control group one size to
treated group size (Nc1/Nt), the initial bias inX be-
tween the treated group and control group one (B), the
variance ofX in the treated group and control group one:
σ2

t ), and the amount of non-linearity in the relationship
between the response andX (a). The chosen values of
a reflect moderate (±0.5) and relatively large (±1) non-
linearity in the relationship betweenX andY , as used
in Rubin (1973b) and Rubin (1979). For the range ofX
distributions considered, a value ofa of ±0.5 generally
leads to a linearr2 value of approximately 0.85, whereas
a = ±1 leads to a linearr2 value of approximately0.55.

At each simulation setting we computed the integrated
squared bias (ISB) and percent reduction in ISB of the
estimated treatment effect, where the ISB of the esti-
mated treatment effect is defined asISB = (âte− (γt −
γc1))2 = (âte)2, where âte is the estimated average
treatment effect. The estimate of the treatment effect
using the matching adjustment procedure was obtained
as described in the algorithm given in Section 4, with a
caliper size of 0.2 standard deviations.
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Figure 4: Percentage of matches chosen from control
group one

5.2 Results

5.2.1 Percentage of Matches From Control Group One

One feature of the extended caliper matching method is
that, in situations where the researcher does not spec-
ify the optimal percentage of the matches from control
group one and instead uses a fixed caliper size, the pro-
portion of matches chosen from control group one will
automatically depend on how close the distributions of
covariates are in the treated group and control group one.
Using approximations from Rubin and Thomas (1992),
for each simulation setting we can calculate the maxi-
mum percent bias reduction possible when matching the
treated group and control group one. Simulation settings
with potentially large reductions in bias when matching
using just the treated group and control group one (for
example, a larger ratio of control units to treated units,
or a smaller value ofB) will imply a larger proportion of
matches chosen from control group one rather than con-
trol group two.

This relationship is summarized in Figure 4, which
shows the percentage of matches chosen from control
group one versus the maximum possible bias reduction
from matching with just control group one, across all
1800 simulation settings. As expected, when there is
a larger potential for bias reduction using just control
group one (particularly values greater than 100%), more
matches are chosen from control group one rather than
control group two. This reflects the fact that there are
more treated units who have a match from control group
one within the caliper, and thus fewer matches are ob-
tained from control group two.
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5.2.2 Reductions in Integrated Squared Bias

The matching adjustment procedure yields reductions in
ISB for nearly all 1800 simulation settings, with an av-
erage percent reduction in ISB of 80.6%, but some vari-
ation in the bias reduction possible across settings. An
analysis of variance (ANOVA) on the percent reduction
in ISB indicates thatδ1, the ratio ofNc1 to Nt, a, σ2

t ,
and selected interactions all contribute to the variation in
percent reduction in ISB.

We do not present the full results here, but provide a
summary of the results. Larger reductions in ISB are ob-
tained for settings with smaller values ofδ1, larger ratios
of the relative sizes of control group one and the treated
group (Nc1/Nt), and larger ratios of the variance in con-
trol group one and the treated group (σ2

c1/σ2
t ).

Some of these parameters are ones about which a re-
searcher will have some knowledge. In particular, when
doing the matching, a researcher will be able to esti-
mate the parameters that describe the covariate distrib-
utions: Nt, Nc1/Nt, B, σ2

t , andσ2
c1. With regard to

these parameters, a large percent reduction in ISB is ob-
tained when the covariate means in the treated group
and control group one are similar (small values ofB),
when the variance in the treated group is smaller than
the variance in control group one (σ2

t < σ2
c1), and when

the ratio of the size of control group one to the treated
group (Nc1/Nt) is relatively large. The performance of
the matching adjustment procedure is particularly good
whenσ2

t is relatively small andδ1, B, ora are small, and
particularly bad whenσ2

t is large orδ1 or B are large.
These results regardingB, the ratio of sample sizes, and
the ratio of variances correspond with results found in
Rubin (1973a) and Rubin and Thomas (1996) for settings
with one treated and one control group.

The two other parameters (a, δ1) involve the distribu-
tion of the response, and thus a researcher will not have
firm knowledge about their relative sizes. The percent
reduction in bias decreases asδ1 increases, as expected,
because the matching adjustment procedure assumes that
δ1 = 0. Thus, some knowledge of whether the unob-
served difference between control groups one and two
vary with the covariateX can help determine whether
this adjustment method is suitable. The performance of
the procedure depends only somewhat on the value of
a, with the method performing the best whena = −1.
We note that standard ordinary least squares estimates
would be particularly sensitive to the value ofa, perform-
ing worse whena is farther from 0. Thus, this matching
adjustment procedure appears to be less sensitive to non-
linearity in the response function, as further explored in
Rubin and Stuart (2004).

6. Adjustment in the SDDAP

6.1 Set-Up

We will use the SDDAP example to further examine the
matching adjustment procedure. We use a simulated out-
come variable that is based on a realistic model of an
observed outcome, reading score two years after the im-
plementation of the restructuring program. The covariate
utilized (X) is baseline reading score. Baseline and out-
come reading scores are both on a scale from 0 to 100.

Two response surfaces are considered. These corre-
spond toV (X) in Equations (2) and (3). Parameter val-
ues for both were estimated using the observed outcome
reading scores, such that both generated models fitting
the real data well. The two models are:

1. E(Y1|X, D) = a1 + b1X + (δ0 + δ1X)D

2. E(Y2|X, D) = a2 + eb2X + (δ0 + δ1X)D

where, for each value ofδ1 (δ0 is set to equal 0
throughout), 1000 random values of the parameters are
drawn from the following distributions:a1 ∼ N(10, 5),
b1 ∼ N(0.75, 0.125), a2 ∼ N(25, 2.5), and b2 ∼
N(0.0325, 0.005). These parameter values resulted in
linearR2 values of 1 for the linear outcome and approx-
imately 0.85 for the non-linear outcome.

The sample sizes and baseline reading scores are from
the SDDAP, using Grand Rapids High School as the
treated school; only the outcome reading scores are sim-
ulated. There are428 students in the Grand Rapids re-
structuring school,434 in the local Grand Rapids com-
parison school, and1111 in the non-local comparison
schools.

The estimated treatment effect is calculated using the
matching adjustment procedure described in Section 4.
Again we do not add residual bias to the response sur-
faces and thus consider the effects of the procedures on
ISB. Without loss of generality we assume that there is
no effect of the treatment (γt = γc1 = γc2 = 0), and thus
the outcome models are the same in the treated and con-
trol groups (i.e.,Y1(0) = Y1(1) andY2(0) = Y2(1)). We
evaluate the use of the matching adjustment procedure
for both of these outcome variables over a range of val-
ues ofδ1 from 0 to 0.2. The covariateX is in the scale of
0 to 100, soδ1X is still a relatively large number. With-
out loss of generality, for all simulations,δ0 = 1. Simu-
lation results not reported here verify that whenδ1 = 0,
the value ofδ0 does not affect the percent reduction in
ISB, becauseδ0 is well estimated in the group of well
matched controls from both control groups, even in this
setting with control group two of finite size. One hun-
dred sets of simulated outcome values are generated and
the full range ofδ1 values are assessed for each data set.
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Figure 5: SDDAP Matching adjustment procedure: Per-
cent reduction in ISB

With 100 replications, results are accurate to the third
decimal place.

6.2 Results

The results from this simulation are summarized in Fig-
ure 5. As in Section 5, because of differences in initial
bias in the two outcome variables (Y1 andY2), the results
are presented as the percent of initial ISB removed.

When there is no interaction betweenX andD in the
outcome models (δ1 = 0), the matching adjustment per-
forms very well for both the linear and non-linear out-
comes. With a linear outcome, the percent reduction in
ISB is 99%, and for the non-linear outcome the percent
bias reduction is97%. Thus, when the no-interaction as-
sumption is satisfied, the matching adjustment procedure
does perform very well. With this data set, using a con-
trol group two in addition to control group one just three
times the size of the treated group results in substantial
reduction in ISB. An infinite control group two would
result in100% reduction in integrated squared bias.

7. Conclusions

This work has shown the potential for using multiple
sources of control units to estimate causal effects. In
particular, we have described a method for selecting
matched controls from two control groups, as well as a
procedure to adjust for differences between the groups.
The simulations indicate that the method can work very
well, even when the assumptions are not fully satisfied.
The matching method could be generalized and used for
any setting where close matches on some binary covari-
ate are desired, but not at the expense of close matches on

the other covariates. Previous matching methods have re-
quired a choice between forcing an exact match and sim-
ply including the binary variable in the propensity score
or Mahalanobis metric; this work provides a way to ex-
plicitly consider the importance of an exact match on that
binary covariate.

A companion paper (Rubin and Stuart (2004)) extends
the simulations reported here, comparing the matching
adjustment procedure to standard regression adjustment.
Future work should also further examine the optimal per-
cent of matches to get from each control group, and op-
timal ways of choosing those matches.
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A Details of Matching Adjustment
Procedure

The adjustment method can be implemented using the
following procedure, assuming normality of the outcome
variable.

1. Match the treated group and control group one.
For this matched group, select only the “good”
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matches, with “good” defined as being within spec-
ified propensity score calipers (Rosenbaum and Ru-
bin (1985)) or a certain percentage of the matches.
This group of matched individuals from the treated
group and control group one is referred to as the
“C1:T” matched group (depicted to the right of the
X = 0 vertical line in Figure 1).

2. For the individuals in control group one who are
in the C1:T matched group, find matches for them
from control group two. Call this the C1:C2
matched group, and letnC1:C2 be the number of
units in this matched group. These units are de-
picted between the two vertical lines in Figure 1.

3. For the treated units without good matches from
control group one (found in Step 1), that is, the
treated units depicted in Figure 1 to the left of the
X = 0 vertical line, find a match for them from
control group two. This is called the C2:T matched
group. They are the control group two units de-
picted to the left of the left-hand vertical line in Fig-
ure 1.

4. Estimate the bias between the two control groups
using a model, estimated in the C1:C2 matched
group found in Step 2, typically by using a linear
model, e.g., OLS:

Y (0)|β, δ, σ2, X ∼ N(βX + δD, σ2I),

whereX consists of thep covariates. Let̂β, δ̂, and
σ̂2 be the estimates ofβ, δ, andσ2 from this model.
In general,βX and δD could be replaced by any
non-linear functions ofX andD.

5. In preparation for the imputation of the missing
Y (0) values for the treated units, draw (assuming
normality)

s2 ∼ Inv − χ2(nC1:C2 − (p + 2), σ̂2)

d|s2 ∼ N(δ̂, (XT X)−1s2).

6. For each matched control unit, indexed byk,

If unit k is from control group one (found in
Step 1),

ŷk(0) = yk(0)
If unit k is from control group two (found in
Step 3),

ŷk(0) = yk(0)− d.

In other words, if unitk is from control group two,
adjust unitk’s outcome by the estimated difference
between control groups one and two (d). If unit k
is from control group one, leave unitk’s observed
outcome as is.

7. Create a data set that consists of all treated units’
Y (1) values and their matched control units’Y (0)
values, with the control outcomes given byŷk(0),
from Step 6. We then estimate the average effect of
the treatment on the treated asy(1) − ŷ(0), where
y(1) is the vector of observed values ofY (1) in
the treated group and̂y(0) is the vector of values
of Y (0) from Step 6. An extension, explored in
a companion paper (Rubin and Stuart (2004)) is
to use OLS in each imputed data set to obtain a
hopefully improved estimate ofY (1)− Y (0). Here
we illustrate the method using the simple difference
in means to estimate the treatment effect; however
this step can be modified to run any analysis on
the matched data sets (e.g., OLS or a hierarchical
model) and the results combined using the multiple
imputation combining rules.

8. Repeat Steps 5-8 multiple times (i.e., create multi-
ple complete-data sets) to represent the uncertainty
in the estimation ofδ. Use the multiple imputa-
tion combining rules (Rubin (1987, 2004); Little
and Rubin (2002)) to obtain an estimate of the av-
erage treatment effect and its variance. Specifically,
let Q be the average treatment effect,Q̂j be the es-
timate ofQ found using completed data setj, and
Uj be the estimated variance of̂Q − Q found us-
ing completed data setj. Generally, letJ be the
number of imputations (completed data sets) ob-
tained. The multiple imputation estimate of the
average treatment effect iŝQMI = 1

J

∑J
j=1 Q̂j .

The estimated variance of̂QMI − Q is given by
T = U + (1 + 1

J )B, whereU = 1
J

∑J
j=1 Uj is

the average within-imputation variance andB =
1

J−1

∑J
j=1(Q̂j− Q̂MI)2 is the between-imputation

variance.
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