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1. Abstract involves selecting well matched subsets of units from

o _ the original treated and control groups to reduce bias
When estimating causal effects from observational datgyye to those covariates when estimating the treatment ef-

it is desirable to replicate a randomized experiment agect. However, in some settings, there may be interest
closely as possible, for example, by obtaining treatedy combining information from multiple control groups,
and control groups with extremely similar distributions o example: randomized experiments in which it is diffi-
of observed covariates. This goal can often be achievegy| or expensive to form a large control group, but there
by choosing a subsample from the original control groupyye reliable historical patient data or a national disease
that matches the treatment group on the distribution ofegistry of relevant data to supplement the randomized
these covariates, thus reducing bias due to these Copnrols; or settings where the original control group
variates. However, sometimes the original sample Ofyoes not contain enough units who look similar on ob-
control units cannot provide adequate matches for thgeryed covariates to those in the treated group, as in the
treated units. In these cases, it may be desirable to tha'r'?‘lotivating example of this paper, described in Section
matched controls from multiple control groups. Multiple 5 4 \when there are multiple control groups available,
control groups have been used to test for hidden biases i may be wise to utilize good matches from each of
causal inference (e.g., Rosenbaum 2002); however, litthese groups, while simultaneously accounting for po-
tle work has been done on their use in matching or fokentia| differences between them in unobserved covari-
adjusting for biases, such as potential systematic differyies. For example, when utilizing historical data to sup-
ences between the original control group and SUpple.megiT:ement a current randomized clinical trial, researchers
tal control groups beyond that which can be explainedyay want to account for unobserved differences due to
by observed covariates. Here we present a method thgdmporal changes. Here we consider situations with two
uses matches from multiple control groups and adjustgontrol groups and find well-matched units from both
f_or potentially unobserved dlffere_nc_:es between the ad_d"groups in order to estimate, and thereby adjust for, sim-
tional control groups and the original control group in e unobserved differences between the control groups.
the analysis of the outcome. The method is IIIlJStrate‘gpecifically, because the potential outcome under con-
and evaluqted using simulated data as Wel! as data fromoL Y (0), is observed in both control groups, the differ-
an evaluation of a school dropout prevention programence iny (0) between well-matched units from the two
which utilizes both local and non-local matches. control groups can be used to try to adjust for differences
between these groups on unobserved covariates when an-

2 Introduction alyzing the treated and matched control data.

The paper proceeds as follows. The general frame-
work of causal inference is reviewed in Section 2.2, fol-
lowed by a summary of previous uses of multiple con-
trol groups in Section 2.3, and a description of the moti-
vating example, the evaluation of a school dropout pre-
Matching methods, used in the context of causal infervention program (the SDDAP) in Section 2.4. Section
ence to select groups of treated and control units witl8 describes a matching method for use with two control
similar values of background covariates, have been regroups, including an approximation for the optimal num-
ceiving increasing attention over the last few decades irber of matches to obtain from each control group. Sec-
fields such as statistics (e.g., Rubin, 1973a; Rosenbaurntipn 4 provides a description of the matching adjustment

2.1 Matched Sampling in Observational Studies
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tween the treated group and control group one (two stan-
dard deviations difference between the means in this hy-
/ pothetical example): The region &f between the two
o }5 vertical lines atX = 0 and X = 4 indicates values of
X where there is reasonable overlap between the treated
group and control group one—the original control group,

and between these groups and control group two. For
individuals in the treated group witl values greater
than about 0, there is a good match from control group
one. However, for individuals in the treated group with
X values less than about 0, there are few or no appropri-
ate matches from control group one. Those individuals

will, instead, be matched to control group two, which

Treated Group "\ Control Group 1

- 2 0 2 . 6 has good overlap with the treated group over the Xill
x distribution. However, by assumption the difference be-
. . ] tween the treated group and control group one is cap-
Figure 1: Adjustment scenario tured by X, but the difference between control group

two and the other two groups is not captured by #e
covariates (e.g., the treated and original control group

procedure. Sections 5 and 6 present evaluations of th@'® from the same geographical region, whereas con-
method, Section 5 using simulated data, and Section 6 iff©! group two is from another region). Thus, control

the SDDAP setting. Finally, Section 7 concludes. group one exactly matches the treated group on area-
level covariates but does not have good overlap with that

group on individual-level covariates. In contrast, control
group two has good overlap with the treated group on

We consider an observational study or randomized expet!€ individual-level covariates, but is not from the same
iment with one group that received the treatment of inter-9€0graphic area as the treated group. Our objective is
est and two (or more) control groups that did not. A col-to form a single set of matched control units, vylth some
lection of covariatesX, is observed in all groups. The matches_ chosen from each of .the two potential control
goal is to choose subsamples from the original contro©"OUPS, in order to get the benefits of both control groups.
groups that match the treatment groupXnthereby re- If we are willing to restrict estimation of the treatment
ducing bias in the estimated treatment effect due to thosgffect to the space ok™ where there is sufficient over-
covariates. We assume that interest focuses on estimd@P between the treated group and control group one,
ing the average treatment effect in the full treated groupfor €xample, above about 0 or 1 in Figure 1, then we
and thus the matching is allowed to discard “irrelevant” could simply utilize the few matches from control group
members of the control groups, but the full treated groug”ne that match to units in the treated group and discard
is retained. treated units without good matches from control group
Causal effects inherently involve a comparison of po-One- However, in the setting of this article we are inter-
tential outcomes under different treatments on a commofSted in estimating the treatment effect for the full range
set of units. For each individual unitwe observe either ©f X values in the treated group, and we are not will-
Y;(1), the potential outcome under treatment,Yo0), ing to rely on exFrapoIa_tlon of the functional form_of the
the potential outcome under control, depending on treatModel forY’(0) given X' in control group one to estimate
ment assignment. Because we are interested in estimdf?€ treatment effect for treated units with valuesof
ing the effect of the treatment for the full treated group, @utside the range of control group one.
we would effectively like to impute each treated unit’s
potent?al outcome updgr control. To do so, we seek Cony 3 previous Uses of Multiple Control Groups
trol units who look similar to the treated units on all co-
variates, thereby effectively modeling the potential out-There have been some previous uses of multiple con-
comes for the treated if they were exposed to the controltrol groups, generally in the context of testing for hid-
The matching is often done using the propensity scoralen bias. In particular, Campbell (1969) and Rosenbaum
(Rosenbaum and Rubin (1983)), which is the probability(1987) discuss using multiple control groups to estimate
of receiving the treatment given the observed covariateshounds on treatment effects, or to corroborate results by
The situation we consider is illustrated in Figure 1, assessing whether results obtained using multiple control
with univariate X, where there is limited overlap be- groups are as expected given additional available infor-

2.2 Conceptual Framework
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mation. and services designed to affect all students in the school,
Multiple control groups have often been utilized in such as curriculum reform or expanded teacher train-
medicine, particularly through the use of historical con-ing. As one example, the Grand Rapids, Michigan high
trols to supplement information from a randomized orschool restructuring effort was to adopt a 9th grade pro-
contemporaneous control group. Baker and Lindemagram organized around “family groups,” block schedul-
(2001) use multiple control groups to examine the effecting, and interdisciplinary themes, as well as student ser-
of the availability of epidural anesthetic on the rate of vices such as student advocates, social workers, and sub-
Cesarean sections. Using untreated historical patients tstance abuse specialists (Dynarskal. (1998); Agodini
provide information on long-term trends in the outcomeand Dynarski (2004)). Five restructuring programs were
is illustrated in Shen and Fleming (1999) and Ruitial.  chosen to be part of the evaluation of program impacts;
(2003). these were located in Dallas, Grand Rapids, Philadel-
Rosenbaum (1987, 2002) provide a thorough examiphia, Phoenix, and Santa Ana. A comparison school
nation of the use of multiple control groups, including in the same school district was chosen for each of these
formal discussion of the possible benefits of using twoschools. We concentrate on the restructuring program in
control groups, but he focuses on the use of multiple conGrand Rapids, i.e., this will be our treatment group.
trol groups to test for hidden bias. Rosenbaum stresses We focus on a subset of the covariates that were col-
that the value of a second source of controls depends critected: those deemed by Agodini and Dynarski (2004) to
ically on supplementary information that is available re-be potentially related to baseline values of four outcomes
garding unobserved biases that may exist. In particulagdropping out, educational aspiration, absenteeism, and
when some of this supplementary information is avail-self-esteem). These 32 covariates examined include risk
able, a second source of control units can be used to tegfctors for dropping out, baseline test scores, educational
the assumption of strongly ignorable treatment assignaspirations, and demographic information. Nearly one
ment (Rosenbaum and Rubin (1983)), which states thahird of these variables had a significant difference in
treatment assignment is independent of the potential outmeans between the students in the Grand Rapids restruc-
comes given the covariates. Essentially, if, after adjusttured school and the students in the Grand Rapids com-
ing for the observed covariates, the two control groupsparison school at the 5% level, indicating that the stu-
differ with respect to the potential outcome under con-dents in these schools are quite different from one an-
trol, then the treatment assignment is not strongly ignor-other.

able, and at least one of the control groups is not com- Because there is limited covariate overlap between the
parable to the treated group. We extend that approactyo groups, estimation of the unobserved potential out-
by using the two control groups together in one analysisomes using standard methods would rely heavily on un-
to adjust explicitly for the “hidden” bias, rather than just derlying modeling assumptions, due to the extrapolation
test for it, assuming that assignment to control group ongnat would be required. Standard matching methods also
and the treatment group is strongly ignorable. In generalyoyld not be useful here, because there are an insuffi-
if there is evidence under specified assumptions to tetient number of potential matches in the local compar-
for bias, that evidence can instead be used to Improveson school. To address this problem, we propose the
inference. This adjustment also relates to the ideas ofgrmation of a comparison “pseudo-school,” composed
reference sampling or substitution sampling, where samp stydents from multiple comparison schools. One con-
ples are taken at later points in time to compare to earliefq) group (C1) comprises children in the untreated lo-
groups and thereby create adjustments (e.g., Rubin angh| comparison school chosen by the SDDAP evaluation.
Zanutto (2002)). A second control group (C2) comprises students in the
other comparison schools with reliable data (the com-
2.4 The School Dropout Demonstration Assistance Parison schools in Dallas, Phoenix, and Santa Ana). By
Program utilizing this second source of comparison students, we
can obtain better matches on the individXatovariates
This paper was motivated by an applied problem,than if we had to obtain matches from C1 for all of the
in which the originally chosen control group has in- treated students. In particular, we address how to use in-
sufficient covariate overlap with the treated groups.formation from both control sources: students from the
The School Dropout Demonstration Assistance Progranfiocal comparison school, with relatively limited overlap
(SDDAP) was an initiative operating between 1991 andwith the treated students on observed student-level co-
1996 in 85 schools, financed by the Department of Eduvariates, and students who are close matches on these ob-
cation to determine effective strategies to reduce schodderved covariates, but who are from non-local compatri-
dropout. Here we focus on the “restructuring” programs,son schools, while accounting for potentially unobserved
which treated entire schools, putting in place structureglifferences between the local and non-local matched stu-
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dents.

Another possible way to use comparison students from
multiple schools would be to simply pool them all to- - —
gether into one large comparison group and estimate the v
propensity score using the treated group and pooled com- 8
parison group, with an indicator variable for the area in '
which each student lives included as a covariate. How- 8
ever, this will drive the propensity score specification in
an undesirable way, essentially allowing only matches
from the local area, especially if all of the treated group s
is from one area and relatively few of the comparison .
students are from that area, as is true in this example. o4 -
That is, in such cases, the propensity score will essen-
tially equal the indicator variable for local/non-local. We
would like to obtain exact matches on the area variable
when possible, but not at the expense of close matcheson __ ) ]
all of the other covariates; in some sense we treat the area F19ure 2: Results from extended caliper matching
indicator as a “special” matching variable. Because in-
cluding the area indicator in the propensity score model

will tend to result in perfect separation of the local and | t match is tak dl fwhich trol
non-local students on the estimated propensity score, frosest march IS taken, regardiess ot which control group

is important that the area indicator not be included wherl" |Zfrom. Gener?rlly,tthe exttethedhcallperfmatchl?gdprot;]
estimating the propensity score. cedure ensures that a match is chosen from outside the

district only when a close local match can not be found;

the external data set is utilized only as much as “neces-

3. Trade-Offs Between the Two Control sary,” while still ensuring close covariate matches on all
Groups observed covariates.

The extended caliper matching method was imple-
3.1 Obtaining Matches From Both Control Groups mented using the SDDAP Grand Rapids High School

data using the one-dimensional deficient rank distance

Perhaps the first question that arises is how to choosgefined by the estimated linear propensity score. The
the matches from the two control groups. Here we dis-

u . L2 propensity score was estimated using all 32 covariates

icduesass ?));tigﬁsgrcri“ag;rlirr?gtfgljnk?i,n ?féi%;_riit::nfatgeand all units from the treated group and both control
. ’ o . D ifficulti hen includi in-

and Rubin (1983)). Stuart (2004) proposes an additiona) roups. Due to difficulties when including an area in

method that fixes the brobortion of matches from one icator in the propensity score model, as discussed in
X broport o Section 2.4, for the propensity score estimation the units
control group, but results in that work indicate that ex-

. ; from both control groups are pooled as if from one large
tendgd caliper matching has better performance, and thucsontrol group. There are theoretical reasons supporting
we discuss that method here.

. such pooling (Rubin and Stuart (2005)). The matching
In the SDDAP context, for each student in the restruc—resuItS are summarized in Figure 2.

tured (treatment) school, if there is a local match within

a fixed caliper or “distance” (e.g., within 0.25 standard Matching performance is measured by th%"egrgfnt re-

deviations of the treated group’s propensity scores), th&uction in bias, defined for quantify as100 + ===,
closest local control student is chosen. If there are ndvhereB,, is the bias in the matched samples dsygis

local matches within that distance caliper, then the closthe bias in the full samples. The propensity score bias
est match from outside the district is taken. Differentbetween groups one and two is defined here,as e,
calipers generate different numbers of local vs. nonWheree represents the estimated propensity score. The
local matches. Large calipers indicate a preference fopguared covariate bias between groups one and two is
local matches: As the caliper approaches infinity, a locafefined agX; — X»)'’%7! (X, — X»), whereX. is the
match is taken regardless of how close (or far apart) theariance-covariance matrix of in the treated group.
non-local matches are from the treated group. Smaller As expected, the maximum bias reduction is obtained
calipers correspond to greater tolerance for non-locawith a caliper of0, which takes the closest propen-
matches because there will more often not be a locasity score match for each treated student, regardless of
match within a small caliper. At the extreme, a caliperwhether the match is local or non-local. This results in
of 0 indicates that local matches have no priority; theapproximately55% of the matches from the local area,

--- % local matches

—— % bias reduction in propensity score
-~ % reduction in squared bias
-- % significant differences

Caliper: # of SDs
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indicating that for approximately half of the students, tant. For example, Dehejia and Wahba (1999) found that
their “best match” is in the local comparison school, butthey were able to well replicate the results from a ran-
that there is also the need for some matches from outsiddomized experiment estimating the effect of a job train-
the local area to obtain well-matched samples overall. ing program in New Jersey using matched observational

In this example, the bias reduction decreases dramatational data sets (such as the Current Population Sur-
ically for larger caliper sizes. ApproximateBp% re-  vey), which contain individuals from across the United
duction in squared bias (from 0.49 to 0.04) is obtainedStates, and presumably few, if any, from New Jersey in
when the caliper size i8, whereas for a caliper of half the matched groups. Even though a priori one might ex-
of a standard deviation or larger, the reduction in squaregect that being in or out of New Jersey would be impor-
bias is less thaB0%. Calipers larger thaf.5 of a stan-  tant for predicting post-treatment earnings of New Jer-
dard deviation lead to essentially only local matches besey trainees if they were not trained, in this evaluation,
ing chosen, which severely limits the bias reduction onobtaining close matches on the observed individual-level
X that is possible. covariates (such as income in the two years prior to the
study, race, marital status, years of education, etc.) re-
moved essentially all of the bias in the estimation of the
average treatment effect.

We now turn to the question of how large the caliper Operationally, the most obvious way to implement ex-
should be, i.e., how many matches to take from each con€nded caliper matching would be to determine the op-
trol group? In the discussion of extended caliper matchiimal caliper size, given this trade-off between local and
ing, the quality of the matches was assessed by takinffon-local matches. However, for the theory and approx-
into account only the observed covariates. However, dmations given below, we determine the optimal num-
key concern may be that by including matches from out-Per of matches to obtain from control group one, rather
side the local area, we could be introducing bias dudhan the optimal caliper size. Once the optimal num-
to unobserved area-level covariates: Students in GranB€r of matches from control group one is estimated, the
Rapids may be different from students in Dallas or SantgFaliper size can be adjusted accordingly. This is primar-
Ana or Phoenix on some unobserved covariate such d¥ done for simplification of the calculations and ap-
community attitudes about drop-outs. Assessing the regRroximations. Although papers such as Cochran and Ru-
sonable percent of matches from each group should thuin (1973) have investigated the bias reduction possible
consider the possible introduction of bias that may resultVith varying caliper sizes (in the setting with one treated
from including matches from outside the local area. Fordroup and one control group), the approximations in that
concreteness, we will discuss this issue in the context oPaPer assume an infinite number of units in the control
the SDDAP. group. Because we are interested in finite samples from

In particular, previous empirical research (Heckmanthe treated group and control group one, those approxi-
et al.(1998); Glazermaet al.(2003)) indicates that hav- Mations are not useful for our setting.
ing local area matches is very important for replicating
experimental results with observational data, at least ir8.3 Theoretical Setting
\t/t/]:(:ycg nttreaxc';(:-yf(f) tt)ht;illir;:r;)%rrz;?w?:?vmviih ?htzr?n:\;eoftg)r:/cl:geo?we begin by assuming that there i§ no effect of the treat-
obtaining close matches on individual-level covariates ment:Y;—(O) = Yi(l) = Vi fo.r al mdmdual;z‘, .a_nd con-

. . X u 'sider the standard regression set-up for individuaith

The trade-off involves asking questions such as “Would |

. the expected value of the outcoriiga linear combina-
rather match a student from Grand Rapids to anotherstLﬁOn ofpone individual level covaria?teX- which could

dent from Grand Rapids who is vastly different from the .
be a scalar summary pfcovariates, such as the propen-

onglnal student in terms of test scores and parentg ?duéity score, and an indicator for the area (or district, in the
cation, or to a student from Dallas, who has very similar

test scores and parents’ education as the student of inter.0 DAP Setting)Ds, D; = 0/1 for local/non-local:

est?” We do not know the answer to this question; it is a E(Y;|X,D) = BX; + 6D;.

substantive question that depends on the applied setting

and requires the advice of experts. Here we provide a\Ve consider the case with one treated group, two control

way to make use of that expertise. groups, and covariates normally distributed within each
We also note that it is not necessarily unreasonable tgroup, where.; represents the mean &f in the treated

assume that there is no additional bias created by obtairgroup,? is the variance of( in the treated group, and

ing matches from the second control group (for exam-N; is the sample size in the treated group. Analogous

ple, by obtaining matches from outside the local area)notation holds in control groups one and two, indexed by

even in settings where area differences could be impor€'1 and C2, respectively. All individuals in the treated

3.2 Choosing the Caliper Size
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group and control group one (the SDDAP local control
group) haveD, = 0, whereas all individuals in control
group two (the SDDAP non-local control group) have
D; = 1. We assume that control group two is infinite
in size, so that exact matches ahcan be found from
that group for each of the treated group members. Let
m be the number of matches chosen from control group
one; we are interested in determining the optimal value
of m, for giveng ando.

The trade-off to consider is that obtaining close
matches onX may result in higher bias i, and anal-
ogously, obtaining close matches @h may result in o
higher bias inX. This trade-off is in fact often the case;
the non-local control group is used precisely because it
provides closer matches oni; however, those non-local
controls increase bias in the area indicater Match-
ing with multiple control groups involves balancing these
two types of bias. In the scenario here, control group
two can provide exact matches anfor all of the treated
group units, but it may not be desirable to take all of thejg {he same as the variance &f in control group one
(rjr?atches from control group two because of unobservegatg = 02), thenmegy = Ni e (1A))1/ay Further

ifferences between control group two and the treated. = = " : o 3 . .
group as well as control group one, representedby simplification is obtained it; 1: oa = 1, in which

Without loss of generality, we assume that> .. casenmopr = Nt1+exp(%(ug—uc1)+%%-‘rln(NN—:l)). If the
Then the matching will essentially match thestudents  variances ofX are not the same in the treated group and
with the smallest values of in the treated group to the control group one, then a constrained optimization algo-
m students in control group one with the largest valuesrithm such as bisection (Lange (1999)) can be used to
of X. The remainder of the matches (from control groupestimate the optimah.
two, matched to the treated students with flig— m Given a guess or estimate of thaatio, we can use the
largest values ofX) will match the remaining treated formula in Equation (1) to estimate the optimal number
students’ covariate values exactly because control groupf matches from each of the two control groups. Simu-
two is assumed to be infinite in size. lations to assess the performance of this approximation

The expected bias in the estimated treatment effectare reported in Stuart (2004); even though the approxi-
A =Y, — Y, whereY, andY,,. are the observed mation assumes an infinite control group two, results in-
outcomes in the treated and matched control group, is: dicate that the approximation holds well even when the

control group two is only twice as large as the treated

40 60 80 100
1 1

Optimal Percent Local Matches
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|

T T T T T T T
0.0 05 10 15 20 25 3.0
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Figure 3: SDDAP: Optimal percent local matches

E(A) = PE(X¢— Xme) +0E(Dy — D) group.
m m N,
= Ppe—p (Nucl + 5 70 log < ml)
¢ ¢ 3.4 Choice ofm in SDDAP
Nt —m Nt —mm ] Nt
+ N, M + N, 47t°8\ N, — ) )For the SDDAP, we use the results in Section 3.3 to

m— N, estimate the optimal number of matches from the local
1 ( ) control group. Figure 3 shows the optimal percent local
Ny ; :
matches for a range of values &f whereX is the lin-
This formula uses the approximation for the tail expec-ear propensity score. If the area-level covariates are not

tation of a univariate standard normal distribution from at all important in predicting the outcome £ 0), then
Rubin (1976b),Q(N,n) ~ %m(%)_ The value ofn  the optimal percent local matches is approximateél¥,

that minimizesE (A) is the solution to the equation which is quite close to the percent matches chosen from
the local area with a caliper of 6%%) from Section 3,
log <(Nt — m)"t> _a ) which essentially assumés= 0.
moet ’ Ideally we would like for this plot to be fairly flat over

a range of plausible values éf which would imply that
whereA = 1 (i —jie1)+0e1—01+ 3 5—0c1 log(Ne )+ the estimates of the optimal percent local match would
ot log(Ny). If the variance ofX in the treated group not be too sensitive to mis-estimation of this ratio. This
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result would be especially important when, as in manydifferences between these two groups, represented by
observational studies, there are many outcome variable§ in the region of the treatment group. The extended
not perfectly correlated, and there is a desire to use thenatching algorithm described in Section 3 is used to se-
same matched control group for all outcomes, to bettefect a set of units from control groups one and two who
replicate the design of a randomized experiment. In thdook the most similar to the treated group. The potential
SDDAP example shown in Figure 3, we see that the slop@utcome under control is then imputed for each treated
is fairly steep for values o% less than 1.5; however, this unit. For treated units with a match from control group
will not be true for all data sets. one, that control unit’s outcome value is used. For treated
units with a match from control group two, the match’s
outcome is used, after the adjustment for the unobserved
difference between control groups one and ta)o ful-
tiple imputations of the potential outcomes under control
After doing the matching, researchers may want to ad2"® creqted to accgunt for th_e uncertainty in estima&ing
just for potential differences between the control groupsAp.pendIX 6.2 provides details (.)f the proposed r.nat.chlng
. i . adjustment procedure, assuming a normally distributed
on unobserved variables; here we provide a procedure

) . ) . outcome variable.
for doing so. For this theoretical work, we consider a The method is expected to work well even when the
setting with one observed individual-level covariate P

(which may be a function o covariates, such as the overall relationship between the covaridfeand the out-
propensity score), and the indicatdr which represents come (x)) is non-linear. Whereas standard OLS ad-

the area in which the student lives and distinguishes coﬂjl;sgr?sizéjt?szr?:ihael'tr;zgtrerdeIzgznzg'rﬁrgfrorsosutge (tehnigre
trol groups one and two. Using a set-up similar to that groups,

in Rubin (1973b), let the expected values of the potentiagqveetngd ;jﬁ;ﬁiggfﬂ'%&nz l)nn;h:nzrte\lx\iloo(z(s:géigi[z-
outcomesy;(0) andY;(1) have the following form for n group

oo U . timated). However, the basic version of this method does
individuali with value X; of X and D; of D: assume that there is no interaction betwé2rmnd X;
E(Y;(0)|X,D) = ve + V(X;) + (00 + 61 X;)D;, (2) thatis,D is assumed to have the same effect across the
entire X distribution. Sensitivity to this assumption is
E(Y;(1)|X,D) = v+ V(X;) + (0o + 01X;)D;, (3) assessed in a set of simulations detailed in Section 5. Re-
sults in this paper indicate that the matching adjustment
method is not particularly sensitive to this assumption.

4. Adjusting for Differences Between the
Control Groups

where V(X) is an unknown and generally non-linear
but monotone function oK, common to botty"(0) and
Y (1). The true average treatment effectris= v, — 7.
and this is the estimand of interest. We referto these con- 5 Eygluation of Proposed Adjustment
ditional expectations as “response surfaces,” using the Method
terminology common in experimental design and used
in Cochran and Rubin (1973) and Rubin (1979), among
others.

The intuition behind this method can be seen in Fig-
ure 1, which illustrates the scenario for our theoretical
situation with one covariateX). In Figure 1,6 = &g

andd, = 0 so that there is a constant “district effect” be- Monte Carlo simulations were performed to assess the

tween control groups one and two. Because the responggrformance of the matching adjustment described in

surfaces may differ in control groups one and two (assection 4. The simulation setting is similar to that in Ru-

seen in the two distinct parallel response lines in Figureyin (1979) and Rubin and Thomas (2000), where match-

1), we will adjust the observed outcomes of the matchesgng versus OLS are compared in a range of settings with

from control group two by an estimate of the difference non-linear response surfaces. Here we present a sum-

between control groups one and two. That differemge ( mary of the setting and results.

is estimated using the group of units from control group  parallel but non-linear response surfaces were exam-

one who look most similar to the treated group (infie  jned, with a single covariat&:

space between the two vertical lines) and well-matched

units from control group two. The idea is to make the  E(Y;(5)| X3, Dj)=~+ e 4 (60 + 61X:)Dj, (4)

outcomes for the matches from control group two look

as if they “could have been” from control group one. for groupj, j =treated (t), control group one (cl), con-
The outlined procedure utilizes information from both trol group two (c2);D; = D.; = 0; D = 1. The true

control groups and accounts for potentially unobservedreatment effect is zero, which is no restriction when the

5.1 Simulation Setting
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treatment effect is additive. We also assume that there is
no bias due to any other unobserved covariates; the out-
come calculated for each individual is the mean response
of each subject conditional on the parameter values, co- 81
variates, and control group membership. The bias in the

proposed adjustment method can be seen most clearly by
examining mean responses only.

Percent of matches from C1

As earlier, assume that there d¥gunits in the treated
group with covariate distribution parameterized such that
X; ~ N(B/2,02), and N.; units in control group 2
one with covariate distribution parameterized such that ‘

2 2 T T T T
X, ~ N(=B/2,02), whereZ:t%1 — 1. We again

2 laximum possible bias reduction usin onl
assume that control group two is infinite in size so that e posstle beseducin g CL ey
exact matches o can be fou'nd' ffom this group. Al- Figure 4: Percentage of matches chosen from control
though the assumption of an infinite control group twogroup one
is impossible to satisfy in practice, this setting can still
provide guidance for real-world situations because, if an
infinite second control group does not help much, then
it is unlikely that a second control group would provide

. . . e 5.2 Results
any real assistance in real-world settings with finite sam-
ple sizes and additional cost constraints that may make
it more expensive to obtain data from a second controP-2-1 Percentage of Matches From Control Group One

group. Section 6 considers the finite control group two
of the SDDAP. One feature of the extended caliper matching method is

that, in situations where the researcher does not spec-
ify the optimal percentage of the matches from control

The simulations varied the following parameters: thedroup one and instead uses a fixed caliper size, the pro-
difference between control groups one and tég Gnd  Portion of matches chosen from control group one will
without loss of generalityi, is set to 1), the treated group automatically depend on how close the distributions of
sample sizey;), the ratio of control group one size to coyariates are in the treated group and control group one.
treated group sizeN.i/N,), the initial bias inX be-  USing approximations from Rubin and Thomas (1992),
tween the treated group and control group oBg, ¢he  for each simulation setting we can calculate the maxi-
variance ofX in the treated group and control group one:; Mum percent bias reduction possible when matching the
o2), and the amount of non-linearity in the relationship {réated group and control group one. Simulation settings
between the response aid(a). The chosen values of With potentially large reductions in bias when matching
a reflect moderate(0.5) and relatively large£1) non- ~ USing just the treated group and control group one (for
linearity in the relationship betweel andY, as used €Xample, a larger ratio of control units to treated units,
in Rubin (1973b) and Rubin (1979). For the rangetof ~Or @ smaller value oB) will imply a larger proportion of
distributions considered, a value @fof +0.5 generally ~Matches chosen from control group one rather than con-
leads to a linear? value of approximately 0.85, whereas {rol group two.

a = £1 leads to a linear? value of approximately.55. This relationship is summarized in Figure 4, which
shows the percentage of matches chosen from control
group one versus the maximum possible bias reduction

At each simulation setting we computed the integratedrom matching with just control group one, across all
squared bias (ISB) and percent reduction in ISB of thel800 simulation settings. As expected, when there is
estimated treatment effect, where the ISB of the estia larger potential for bias reduction using just control
mated treatment effect is definedI&$ = (a/t\e —(y— group one (particularly values greater than 100%), more
Ye1))? = (a?e)Q, whereate is the estimated average matches are chosen from control group one rather than
treatment effect. The estimate of the treatment effectontrol group two. This reflects the fact that there are
using the matching adjustment procedure was obtainethore treated units who have a match from control group
as described in the algorithm given in Section 4, with aone within the caliper, and thus fewer matches are ob-
caliper size of 0.2 standard deviations. tained from control group two.
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5.2.2 Reductions in Integrated Squared Bias 6. Adjustmentin the SDDAP

. . . . 6.1 Set-Up
The matching adjustment procedure yields reductions in

ISB for nearly all 1800 simulation settings, with an av- We will use the SDDAP example to further examine the
erage percent reduction in ISB of 80.6%, but some varimatching adjustment procedure. We use a simulated out-
ation in the bias reduction possible across settings. Arome variable that is based on a realistic model of an
analysis of variance (ANOVA) on the percent reduction observed outcome, reading score two years after the im-
in ISB indicates that;, the ratio of N.; to Ny, a, o2, plementation of the restructuring program. The covariate
and selected interactions all contribute to the variation irutilized (X) is baseline reading score. Baseline and out-
percent reduction in ISB. come reading scores are both on a scale from 0 to 100.

We do not present the full results here, but provide a Two response surfaces are considered. These corre-

summary of the results. Larger reductions in ISB are Ob_spond toV(X) in Equations (2) and (3). Parameter val-

tained for settings with smaller valuesdaf, larger ratios ues dfor both were esﬁlr?hatf(g utilng tnher Otbzexsge?:tﬁgir:e
of the relative sizes of control group one and the treatedca0Ng SCOTES, SUch hat both generate 9

group (V.1 /Ny), and larger ratios of the variance in con- the real data well. The two models are:

trol group one and the treated grougr(/o?). 1. E(Y1|X, D) = a1 + b1 X + (5 + 6,.X)D

Some of these parameters are ones about which a re- b X
searcher will have some knowledge. In particular, when 2- E(Y2|X, D) = az + €% + (do + 0:.X)D
doing the matching, a researcher will be able to esti- .
g g vhere, for each value ob; (Jp is set to equal O

mate the parameters that describe the covariate distrid?
utions: N, N.i/N,, B, o2, ando?. With regard to throughout), 1000 random values of the parameters are

b rawn from the following distributionsa; ~ N(10,5),

these parameters, a large percent reduction in ISB is ob&r
. : . ~ N(0.75,0.125), ay ~ N(25,2.5), andby ~
tained when the covariate means in the treated group! ’ ’ .
: (0.0325,0.005). These parameter values resulted in

and control group one are similar (small valuesR)f, ) 5 .
when the variance in the treated group is smaller thaﬁ'nearR values of 1 for the linear outcome and approx-
imately 0.85 for the non-linear outcome.

the variance in control group one < ¢2), and when le si d baseli i ¢
the ratio of the size of control group one to the treated The sample sizes an dase '”_3 reg. ||;gsscr(1)ref are I:°m
group (V.. /N,) is relatively large. The performance of € SPDAP, using Grand Rapids High School as the

the matching adjustment procedure is particularly goootreated school; only the °“tC°“_’e reading Scores are sim-
wheno? is relatively small and; , B, or a are small, and ulated. There ard28 students in the Grand Rapids re-

particularly bad whemw? is large oré, or B are large. structuring school434 in the local Grand Rapids com-

These results regarding, the ratio of sample sizes, and parrllsoln school, and111 in the non-local comparison
the ratio of variances correspond with results found inS¢"00!S:

Rubin (1973a) and Rubin and Thomas (1996) for settings The estimated treatment effect is calculated using the
with one treated and one control group. matching adjustment procedure described in Section 4.

Again we do not add residual bias to the response sur-

The two other parameters,(d;) involve the distribu-  faces and thus consider the effects of the procedures on
tion of the response, and thus a researcher will not havesp. Without loss of generality we assume that there is
firm knowledge about their relative sizes. The percenthg effect of the treatment{ = 7.1 = .2 = 0), and thus
reduction in bias decreases@sincreases, as expected, the outcome models are the same in the treated and con-
because the matching adjustment procedure assumes thas| groups (i.e.Y;(0) = Y3 (1) andY;(0) = Y5(1)). We
61 = 0. Thus, some knowledge of whether the unob-evaluate the use of the matching adjustment procedure
served difference between control groups one and tweor both of these outcome variables over a range of val-
vary with the covariateX can help determine whether yes ofs; from0to00.2. The covariateX is in the scale of
this adjustment method is suitable. The performance of) to 100, sod; X is still a relatively large number. With-

the procedure depends only somewhat on the value ddut loss of generality, for all simulation, = 1. Simu-

a, with the method performing the best when= —1.  |ation results not reported here verify that whign= 0,
We note that standard ordinary least squares estimatefe value ofé, does not affect the percent reduction in
would be particularly sensitive to the valuecfoerform-  |SB, becausé, is well estimated in the group of well

ing worse wher is farther from 0. Thus, this matching matched controls from both control groups, even in this
adjustment procedure appears to be less sensitive to noBetting with control group two of finite size. One hun-
linearity in the response function, as further explored indred sets of simulated outcome values are generated and
Rubin and Stuart (2004). the full range of; values are assessed for each data set.
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the other covariates. Previous matching methods have re-
quired a choice between forcing an exact match and sim-
\ ply including the binary variable in the propensity score

or Mahalanobis metric; this work provides a way to ex-
plicitly consider the importance of an exact match on that
binary covariate.

A companion paper (Rubin and Stuart (2004)) extends
the simulations reported here, comparing the matching
adjustment procedure to standard regression adjustment.
Future work should also further examine the optimal per-
&1 cent of matches to get from each control group, and op-

timal ways of choosing those matches.
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matches, with “good” defined as being within spec-
ified propensity score calipers (Rosenbaum and Ru-
bin (1985)) or a certain percentage of the matches.
This group of matched individuals from the treated
group and control group one is referred to as the
“C1:T” matched group (depicted to the right of the
X = 0 vertical line in Figure 1).

. For the individuals in control group one who are
in the C1:T matched group, find matches for them
from control group two. Call this the C1:C2
matched group, and letc.c2 be the number of
units in this matched group. These units are de-
picted between the two vertical lines in Figure 1.

. For the treated units without good matches from
control group one (found in Step 1), that is, the
treated units depicted in Figure 1 to the left of the
X = 0 vertical line, find a match for them from
control group two. This is called the C2:T matched
group. They are the control group two units de-
picted to the left of the left-hand vertical line in Fig-
ure 1.

. Estimate the bias between the two control groups
using a model, estimated in the C1:C2 matched
group found in Step 2, typically by using a linear
model, e.g., OLS:

Y (0)8,6,0%, X ~ N(BX + 6D, 0I),

whereX consists of the covariates. LeB, 4, and
&2 be the estimates @f, §, ando? from this model.
In general,5X andéD could be replaced by any
non-linear functions o andD.

. In preparation for the imputation of the missing
Y (0) values for the treated units, draw (assuming
normality)

52 ~ Inv — x*(ncr.c2 — (p+2),6%)
d|s®> ~ N(6,(XTX)"1s?).
. For each matched control unit, indexedAy

If unit & is from control group one (found in
Step 1),

9x(0) = yx(0)
If unit & is from control group two (found in
Step 3),

9(0) = yx(0) — d.

In other words, if units is from control group two,
adjust unitk’s outcome by the estimated difference
between control groups one and twd.( If unit &

is from control group one, leave uriits observed
outcome as is.
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7. Create a data set that consists of all treated units’

Y'(1) values and their matched control uniis{0)
values, with the control outcomes given Hy(0),
from Step 6. We then estimate the average effect of
the treatment on the treated @4 ) — 4(0), where
y(1) is the vector of observed values &f(1) in

the treated group angl(0) is the vector of values

of Y'(0) from Step 6. An extension, explored in
a companion paper (Rubin and Stuart (2004)) is
to use OLS in each imputed data set to obtain a
hopefully improved estimate &f (1) — Y'(0). Here

we illustrate the method using the simple difference
in means to estimate the treatment effect; however
this step can be modified to run any analysis on
the matched data sets (e.g., OLS or a hierarchical
model) and the results combined using the multiple
imputation combining rules.

8. Repeat Steps 5-8 multiple times (i.e., create multi-

ple complete-data sets) to represent the uncertainty
in the estimation off. Use the multiple imputa-
tion combining rules (Rubin (1987, 2004); Little
and Rubin (2002)) to obtain an estimate of the av-
erage treatment effect and its variance. Specifically,
let Q be the average treatment effe@k; be the es-
timate of @ found using completed data sgtand

U; be the estimated variance of — Q found us-
ing completed data set Generally, letJ be the
number of imputations (completed data sets) ob-
tained. The multiple imputation estimate of the
average treatment effect @, = %ijl Q;.
The estimated variance G@MI — @ is given by

T =U+ (1+ %)B, whereU = %ijl U; is

the average within-imputation variance afd =
5 37 1(Qj — Quir)? is the between-imputation
variance.



