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Executive Summary 
            Mathematics is the key to many of the most secure and financially rewarding careers in every sector of the 
economy. The impact of computers and information technology can be seen not just in engineering and science, but in 
such diverse areas as manufacturing, agriculture, health care, and advertising. To be prepared for careers in virtually 
any industry, and especially for changing careers during a lifetime, secondary school students need to learn a substantial 
core of mathematics. However, this core is not like either the abstract pre-engineering mathematics of the academic 
curriculum or the restricted topics of the discredited "vocational math." New approaches are needed to meet today's 
challenges. 

            For most of this century, schools have been organized to prepare some students for college and others for work. 
In the future, most jobs and all careers will require some form of postsecondary education. Thus, all students, regardless 
of career goals, can benefit from a mathematics curriculum that prepares them for both work and higher education. A 
three-year high school program based on "functional" mathematics can do just that: provide a strong background for 
students entering the workforce as well as for those moving directly into postsecondary education. 

            A high school curriculum that helps all students master functional mathematics would effectively address issues 
of both equity and competitiveness. All students would have equal opportunity to master the mathematics required for 
the new world of work. Moreover, a three-year core of functional mathematics would give students a strong foundation 
from which to enter the workplace or pursue advanced education. 

            Most of the elements of functional mathematics are unsurprising. Percentages and ratios; linear and quadratic 
equations; areas, angles, and volumes; and exponential growth and trigonometric relations are included in any strong 
high school mathematics program. Although some topics in functional mathematics are uncommon (e.g., index 
numbers, tolerances, three-dimensional geometry, indirect measurement, financial mathematics), most are taught in any 
high-quality high school mathematics program. To achieve its goal of preparing students both for work and for further 



education, functional mathematics respects the many parts of the traditional curriculum that are broadly useful, even 
while including topics such as spreadsheets, data analysis, and statistical quality control that are hardly ever part of high 
school mathematics. In functional mathematics, utility is center stage. 

            The elements of functional mathematics can be embedded in many different curricula. However, any 
mathematics curriculum designed on functional grounds--whether organized around external contexts or mathematical 
themes--will emphasize authentic applications from everyday life and work. In such a curriculum, students will gain 
considerable experience with mathematical tasks that are concrete yet sophisticated, conceptually simple yet cognitively 
complex. By highlighting the rich mathematics embedded in everyday tasks, this approach (in contrast to traditional 
"vocational math") can dispel both minimalist views about the mathematics required for work and elitist views of 
academic mathematics as an area with little to learn from work-based problems. 

            A curriculum based on functional mathematics requires appropriate content, authentic contexts, engaging tasks, 
and active learning. By featuring mathematics in common contexts, a functional curriculum can motivate students to 
link meaning with mathematics. Such contexts invite variations that can propel students to deep understanding and 
stimulate mathematical habits of mind. 

            Functional mathematics channels the much-criticized "mile-wide, inch-deep" curricular river into a narrower 
stream of ideas and procedures that reinforce each other as students progress through school and college and on into 
careers. It provides a rich foundation of experience and examples on which students can build subsequent abstractions 
and generalizations. Indeed, to fulfill its goals, a functional curriculum must leave students well prepared not only for 
work but also for subsequent courses in more abstract mathematics. 

            Functional mathematics addresses many needs that are otherwise often neglected. Neither traditional college-
preparatory mathematics curricula nor the newer standards-inspired curricula were designed specifically to meet either 
the technical and problem-solving needs of the contemporary workforce or the modern demands of active citizenship. 
Although each includes much that is of value for employment and citizenship, neither provides the context, motivation, 
or balance of mathematical topics necessary for employees or citizens in a data-drenched world. 

            Indeed, for most students, functional mathematics will provide better preparation than current high school 
curricula. Functional mathematics stresses an in-depth understanding of topics that are most likely to be used by large 
numbers of people. By employing concrete methods in settings that are both complex and realistic, functional 
mathematics pushes all students to draw on the full breadth of mathematics. In short, by focusing on what is useful, 
functional mathematics increases both student interest and student learning. 

Beyond Eighth Grade:  
Functional Mathematics  

for Life and Work 
            For most of this century, schools have been organized to prepare some students for college and others for work. 
But the world of work is changing, much of it requiring increased use of data and computers, measurements and graphs. 
In the twenty-first century, most jobs and all careers will require some form of postsecondary education. Thus, all 
students, regardless of career goals, will benefit from a curriculum that prepares them for both work and higher 
education. Instead of either/or, schools must now focus on both/and. 



            In this paper, we propose a three-year high school program based on functional mathematicsthat prepares 
students for life and work. Typically, classroom applications are designed to serve mathematics--to offer context, to 
illustrate use, to motivate new concepts, or to integrate topics. In functional mathematics, the priorities are reversed. 
Instead of applications being introduced to help students learn a predefined body of knowledge, the mathematical topics 
are selected to prepare students to cope with common problems they will face in life and work. Examples of such real-
life problems appear throughout this paper to illustrate in a concrete way the nature of functional mathematics. 

            Functional mathematics, if thoughtfully and rigorously developed, can provide a strong background both for 
students entering the workforce and for those moving directly into postsecondary education. Indeed, for most students, 
functional mathematics will provide better preparation than the current high school curricula. Functional mathematics 
stresses an in-depth understanding of fundamental topics that are most likely to be used by large numbers of people. By 
employing concrete tools in settings that are both complex and realistic, functional mathematics pushes students to 
draw on the full breadth of mathematics. In short, focusing on useful mathematics increases total learning. 

 
 

 
Given the complete record of a soccer league that  
ended in a three-way tie, devise a fair means of  
determining which team should be crowned champion.  

 

Need and Urgency 
            Despite mathematics' reputation as an ancient subject consisting of indisputable facts, mathematics education 
has recently become the source of passionate public debate. At stake is nothing less than the fundamental nature of 
school mathematics: its content (what should be taught), pedagogy (how it should be taught), and assessment (what 
should be expected). At times, these "math wars" have become so heated that Education Secretary Richard Riley 
(1998b) has issued a public call for a truce. 

            At the risk of oversimplifying, this debate can be characterized as a clash between "traditionalists" who expect 
schools to provide the kind of well-focused mathematics curriculum that colleges have historically expected and 
"reformers" who espouse a broader curriculum that incorporates uses of technology, data analysis, and modern 
applications of mathematics. The reform approach is championed by the National Council of Teachers of Mathematics, 
whose standards (NCTM, 1989) advocate a robust eleven-year core curriculum for all students, with supplementary 
topics for those who are "college-intending." Critics argue, however, that the NCTM standards are diffuse and 
ambiguous (Cheney, 1997; Raimi & Braden, 1998), that they are based on questionable assumptions about how 
students learn (Anderson, Reder, & Simon, 1997), and that curricula based on these standards will not provide the kind 
of rigorous preparation students need to succeed in calculus and other college-level mathematics courses (Wu, 1997). 

            Largely left out of this debate is a major constituency of mathematics education: employers. In today's 
information age, economic prosperity--for individuals as well as for the nation--depends on "working smarter, not just 
working harder." Yet, a majority of America's businesses report deficiencies in the technical and problem-solving skills 
of their workers and a severe shortage of prospective employees with these requisite skills. The cost of finding skilled 
employees has become a serious impediment to growth in many sectors of the U.S. economy (Carnevale, 1998). 



            Also left out are the voices of democracy and citizenship which were so important in the development of public 
education in the United States. Now, two centuries later, quantitative literacy is every bit as important as verbal literacy 
for informed participation in civic affairs. Today's news is not only grounded in quantitative issues (e.g., budgets, 
profits, inflation, global warming, weather probabilities) but is also presented in mathematical language (e.g., graphs, 
percentages, charts).  

            Neither traditional college-preparatory mathematics curricula nor the newer standards-inspired curricula were 
designed specifically to meet either the technical and problem-solving needs of the modern workforce or the modern 
demands of active citizenship. Although each includes much that is of value for citizenship and employment, neither 
provides the context, motivation, or balance of mathematical topics necessary for citizens or prospective employees in a 
data-drenched world.  

            The common curricular alternative--vocational or consumer mathematics--is significantly worse. Historically, 
vocational mathematics has provided only a narrow range of skills limited to middle school topics and devoid of 
conceptual understanding (National Center for Education Statistics [NCES], 1996). Such programs leave students 
totally unprepared--not only for modern work and postsecondary education, but even for advanced secondary school 
mathematics. Although some innovative school-to-career programs are seeking to change this pattern of low 
expectations, the vast majority of secondary schools in the United States offer students no effective option for 
mathematics education that meets the expectations of today's high-performance workplace. 

 
 

 
A student plans to take out a $10,000 loan at 7%  
interest with monthly payments of $120, but before  
she closes the deal, interest rates rise to 7.5%. What  
will happen if she keeps her monthly payments at $120?  

 

Employment and Education 
            Mathematics is the key to many of the most secure and financially rewarding careers in every sector of the 
economy (Business Coalition for Education Reform, 1998). The impact of computers and information technology can 
be seen not just in engineering and science, but in such diverse areas as manufacturing and agriculture, health care and 
advertising. To be prepared for careers in virtually any industry, and especially for changing careers during a lifetime, 
secondary school students need to learn a substantial core of mathematics. However, this core is like neither the abstract 
pre-engineering mathematics of the academic curriculum nor the restricted topics of the discredited "vocational math." 
New approaches are needed to meet today's challenges. 

            A recent survey of 4,500 manufacturing firms revealed that nearly two out of three current employees lack the 
mathematics skills required for their work, and that half lack the ability to interpret job-related charts, diagrams, and 
flowcharts (National Association of Manufacturers, 1997). Other reports cite a major shortage of qualified candidates 
for jobs in the information technology industries (Information Technology Association of America, 1997), as well as 
for technicians and licensed journeymen in the skilled trades (Mathematical Sciences Education Board, 1995). Even 
office work has changed, so that technical skills are now at a premium (Carnevale & Rose, 1998). 



            What current and prospective employees lack is not calculus or advanced algebra, but a plethora of more basic 
quantitative skills that could be taught in high school but are not (Murnane & Levy, 1996; Packer, 1997). They need 
statistics and three-dimensional geometry, systems thinking and estimation skills. Even more important, they need the 
disposition to think through problems that blend quantitative data with verbal, visual, and mechanical information; the 
capacity to interpret and present technical information; and the ability to deal with situations when something goes 
wrong (Forman & Steen, 1998).  

            Business has discovered, and research confirms, that diplomas and degrees do not tell much about students' 
actual performance capabilities. For example, data from the National Assessment of Educational Progress (NAEP) 
(1997b) show that twelfth-grade students at the 10th percentile are essentially similar to fourth-grade students at the 
80th percentile. Indeed, the level that NAEP considers "advanced," and which is achieved by only  
8% of U.S. students, is considered just barely adequate in the context of college expectations (NAEP, 1997a). 
Enrollment data for postsecondary mathematics courses confirm this discrepancy (Loftsgaarden, Rung, & Watkins, 
1997): three out of every four students enrolled in college mathematics courses are studying subjects typically taught in 
high school or even middle school (see Figure 1). Clearly, covering mathematics in school is no guarantee of mastering 
it for later use. 

1995 Postsecondary Mathematics Enrollments  

Figure 1  

            Nearly two-thirds of high school graduates enter postsecondary education primarily in order to obtain further 
skills and an advanced degree. Unfortunately, fewer than half of those who begin college attain any degree at all within 
five years. Furthermore, the majority of those who begin a traditional liberal arts program never finish. Although the 
economy clearly needs employees with advanced technical training (Judy & D'Amico, 1997), these students--the 
majority--end up with just a list of courses and no degree or job certification (Barton, 1997). 

            Ever since the publication of A Nation at Risk(National Commission on Excellence in Education, 1983), many 
advocates of educational reform have built their case on international competitiveness: to compete in a global economy 
that is increasingly technological, U.S. workers need better technical education (Commission on the Skills of the 
American Workforce, 1990). Yet, data from international comparisons such as the Third International Mathematics and 
Science Study (TIMSS) show that U.S. students are far from competitive (NCES, 1998). Thus, according to this 
argument, to remain internationally competitive, we need to radically overhaul mathematics and science education 
(Riley, 1998a). 

            In fact, the U.S. economy is thriving despite consistently weak performances by students on both national and 
international tests. This paradox has led some observers to suggest that the problem with weakness in school 
mathematics and science education is not so much that it hurts the overall economy, but that it increases economic 
inequities by providing the means to a good livelihood to only a few, primarily those from upper socioeconomic 
backgrounds (Barton, 1997; Bracey, 1997). From this perspective, the primary rationale for improving school 
mathematics is not competitiveness, but equity: in today's data-driven world, there is no justification for approaches to 
mathematics education that filter out those with greatest need and equip only the best-prepared for productive high-
income careers.  

            A high school curriculum that helps all students master functional mathematics would effectively address issues 



of both equity and competitiveness. Since all students would study the same curriculum, all would have equal 
opportunity to master the mathematics required for the new world of work. Moreover, a three-year core of functional 
mathematics would give all students a strong platform on which to build either technical work experience or advanced 
education. Either route would lead to productive careers. 

 
 

 
A large load of topsoil forms a conical pile. Because of  
its size, you cannot directly measure either its diameter  
or its height. Find a strategy for estimating its volume.  

 

Theory and Practice 
            Historically, education in the United States has vacillated between the liberal and the pragmatic, between Robert 
Maynard Hutchins and John Dewey. Mathematics reflects a similar tension in the delicate balance of theory and 
practice, of the pure and the applied (Thurston, 1990). Through most of this century, school mathematics has oscillated 
back and forth between these poles (Kilpatrick, 1997). Indeed, nearly a century ago, the president of the American 
Mathematical Society lamented the "grievous" separation of pure from applied mathematics and urged schools to 
provide a more "practical" mathematics education: "With the momentum of such [education], college students would be 
ready to proceed rapidly and deeply in any direction in which their personal interests might lead them" (Moore, 1903). 
Today's effort to make mathematics more functional for all students is just the latest chapter in this long saga. 

            In recent years, this debate has been expressed in the form of standards, both academic and occupational. 
Coordinating these standards will involve not only issues of content and pedagogy, but also the balance of school-based 
vs. work-based learning (Bailey, 1997). Historically, vocational curricula designed to prepare students for work have 
been burdened by second-class status in comparison with more rigorous academic curricula. Too often, vocational 
programs became dumping grounds for students who appeared slow or unmotivated--"other people's children." Most 
programs responded by limiting goals and lowering expectations, thereby offering stunted education to students who 
were already behind. In contrast, contemporary career-oriented curricula have been designed not primarily as training 
for low-skill jobs but as motivation for rigorous study, both academic and vocational (Bailey & Merritt, 1997; 
Hoachlander, 1997). By setting high standards, these programs offer significant responses to the twin challenges of 
equity and competitiveness. 

            Mathematics provides a microcosm of the duality between the academic and the vocational. Widely perceived 
as the epitome of theory and abstraction, mathematics is also valued as a powerful, practical tool (Odom, 1998). In 
many occupations, quantitative literacy is as important as verbal literacy (Steen, 1997); however, if mathematics 
education is to serve the world of work, a different type of experience than that found in typical mathematics courses is 
required (National Research Council, 1998). 

            Between theory and application lies professional practice--the synthesis of thought and action employed by 
practitioners in all vocations. Many have argued that practice, properly understood, can be a legitimate and unifying 
goal of education. Practice is functional knowledge, the kind of know-how that allows people to get things done. 
According to educator Lee Shulman (1997), practice can provide a context in which theory becomes meaningful, 



memorable, and internalizable. Peter Denning (1997), a computer scientist, believes that practice--not knowledge or 
literacy--is what constitutes true expertise. Indeed, practice is what people tend to expect of schools, especially of 
mathematics education. It is at the heart of functional mathematics. 

            An infusion of practice into school mathematics can overcome what Shulman (1997) identifies as major 
deficiencies of theoretical learning: loss of learning ("I forgot it"), illusion of learning ("I thought I understood it"), and 
uselessness of learning ("I understand it but I can't use it"). Adults who are not professional users of mathematics will 
recognize these deficiencies from their own experiences. Little of what adults learned in school mathematics is 
remembered or used, so the accomplishment of "learning" mathematics is often an illusion. In fact, the mathematics 
many students are force-fed in traditional school environments creates a severe psychological impediment to the 
practice of mathematics in adult life (Buxton, 1991; Cockroft, 1982). Functional mathematics avoids many of these 
pitfalls by emphasizing that the goal of mathematics education is not just mathematical theory and word problems, but 
authentic mathematical practice. 

 
 

 
Habitat for Humanity uses volunteer labor to build  
inexpensive homes, which it sells for the cost of  
materials. Using information on standard building  
supplies obtained from a local lumberyard, design a  
simple home whose building materials can be obtained  
for $15,000.  

 

High School Mathematics 
            Traditionally, high school mathematics has served two different purposes--to prepare college-intending students 
for calculus (and other mathematics-based courses) and to equip other students with necessary skills, mostly arithmetic, 
so that they can function as employees, homemakers, and citizens. Although most traditionalists--and most parents and 
grandparents--still support these dual goals, reformers argue for a common curriculum for allstudents which 
emphasizes problem solving, communication, reasoning, and connections with other disciplines. 

            Proposed goals for school mathematics can be found in many sources. Some focus directly on K-12, others on 
the needs of postsecondary education or employers. NCTM (1989) provides a comprehensive set of standards for grade 
levels K-4, 5-8, and 9-12 that represents the "reform" perspective. In contrast, California recently adopted mathematics 
standards that represent a more traditional perspective (California Academic Standards Commission, 1997). The 
American Mathematical Association of Two-Year Colleges (1995) articulated standards for college mathematics before 
calculus that include expectations for the mathematical foundation that students need to succeed in college. In addition, 
in the influential report What Work Requires of Schools(Secretary's Commission on Achieving Necessary Skills 
[SCANS], 1991), the U.S. Department of Labor outlined both foundation skills and broad employability competencies 
for mathematics and other subjects.  

            These standards differ greatly in both mathematical content and rhetorical style (see Appendix A), although 



most have overlapping goals. Indeed, to succeed in the real world of teachers and parents, schools and school boards, a 
mathematics curriculum must 

            (1) meet society's expectations of what all high school graduates should know and be able to do. 

            (2) reflect priorities common to state and national guidelines. 

            (3) increase the number of students who successfully persist in advanced mathematics-based courses, including 
calculus. 

            (4) enable students to see and use mathematics in everyday aspects of life and work. 

            (5) help students understand and use correct mathematical language. 

            Functional mathematics must also meet these objectives. The first two objectives establish priorities: to focus 
early and often on what everyone agrees must be learned, leaving to later (or to optional strands) those topics that only 
some students will find interesting or important. The third objective establishes a standard of quality: to increase the 
number of students who persist in further mathematics-based courses (including calculus, the traditional hallmark of 
mathematical success). The fourth objective conveys a commitment to utility--to ensure that students see mathematics 
as something real in their lives rather than as an alien subject encountered only in school. Finally, the fifth objective 
stresses command of the language of mathematics, a skill at least as important for success as a command of English. 

            By meeting these objectives, functional mathematics will satisfy the general public's expectations of school 
mathematics. In addition, these objectives also enhance functional mathematics' primary goal of preparing students for 
life and work. Consistent quality and high standards are essential in today's high-performance industries. Persistence in 
mathematics is not just of academic importance; it is also one of the best predictors of success in careers (Commission 
on the Skills of the American Workforce, 1990). Moreover, the language of mathematics provides the power to analyze 
and express complex issues in all aspects of life and work. Fluency in this language is important not only for productive 
employees but also for careful consumers and critical citizens. 

            In functional mathematics, utility is center stage. Other objectives play important but supporting roles. 
Unfortunately, many mathematicians and mathematics teachers find utility at best a bleak justification (Howe, 1998) for 
a subject that they chose for its beauty and elegance. For them, the power of mathematics--in Eugene Wigner's famous 
phrase, its "unreasonable effectiveness"--is not its primary virtue, but merely a consequence of its elegance and internal 
structure. Thus, mathematicians are wont to stage their subject with theory and abstraction at the center, employing 
applications, technology, and practice as needed to help promote understanding.  

            To engage mathematicians and mathematics teachers, functional mathematics needs to be seen in terms of both 
utility and beauty. For many students, utility can be a path to beauty, while for others, mathematics by itself provides 
sufficient internal motivation to sustain interest and accomplishment. For any mathematics curriculum to succeed with 
all students, it must build on the twin foundations of utility and elegance. 

 
 

 
What measurements do you need to take in order to  



tile the floor of a room? How can you use these  
measurements to determine the number of regular  
tiles, border tiles, and corner tiles that are needed?  
What if you decide to lay the main tiles on a 45° angle?  

 

Functional Mathematics 
            Functional mathematics comprises content, curriculum, context, and pedagogy. By content we simply mean the 
mathematics students should know and be able to do after finishing the first three years of high school mathematics (see 
Appendix B). Because mathematics is mathematics--whether traditional, reform, or functional--most of these elements 
are unsurprising. Although some topics are uncommon (e.g., index numbers, tolerances, three-dimensional geometry, 
normal curve, quality control charts, standards of proof, financial mathematics, spreadsheets), most are taught in any 
high-quality high school mathematics program. To achieve its goal of preparing students for both work and further 
education, functional mathematics respects the many parts of the traditional curriculum that are broadly useful, even 
while reshaping the boundaries to reflect its distinctive objectives. 

            The outline of functional mathematics in Appendix B reflects an inventory of mathematical topics selected for 
their importance in daily life and modern jobs as well as for their value in providing a strong foundation for further 
education. This outline is organized in predictable strands that cover what is normally subsumed under the umbrella of 
mathematics: numbers and data, measurement and space, growth and variation, chance and probability, reasoning and 
inference, variables and equations, modeling and decisions. Real problems cut across all this mathematics, just as these 
topics cut across the diverse contexts of authentic mathematical practice. 

            Clearly, many of the elements of functional mathematics are identical to the mathematics found in both 
traditional and reformed curricula. The core of school mathematics is more or less the same, even if viewed (or taught) 
from different perspectives. Percentages and ratios; linear and quadratic equations; areas, angles, and volumes; and 
exponential growth and trigonometric relations must be included in any strong high school mathematics program. The 
distinctions among traditional, reformed, and functional curricula lie not so much in core content as in contexts, 
emphases, and pedagogy. 

            Nonetheless, prospective employees for the new high-performance workplace need expertise in several aspects 
of mathematics not now emphasized sufficiently in school. On the one hand, students need greater experience 
recognizing and using some parts of middle school mathematics such as ratio, percentage, and measurement geometry 
that, although covered in current programs, are not used sufficiently to be learned well. On the other hand, as 
prospective employees, they need to understand and be able to use mathematical notions such as data analysis, 
statistical quality control, and indirect measurement that are hardly ever required in high school (Forman & Steen, 
1998). 

            In addition to shifting the balance of topics, functional mathematics provides much greater emphasis on 
"systems thinking"--on habits of mind that recognize complexities inherent in situations subject to multiple inputs and 
diverse constraints. Examples of complex systems abound--from managing a small business to scheduling public 
transportation, from planning a wedding to reforming social security. At all levels from local to national, citizens, 
policymakers, employees, and managers need to be able to formulate problems in terms of relevant factors and design 
strategies to determine the influence of those factors on system performance. Although such systems are often so 



complex that they obscure the underlying mathematics, the skills required to address realistic problems very often 
include many that are highly mathematical. 

            A curriculum built on functional mathematics gives students many opportunities to solve realistic problems and 
build mathematical understanding. Nevertheless, to make this learning valuable for work and further education--as well 
as to enhance understanding--such a curriculum must also help students become fluent in the language of mathematics. 
Individuals need to be able to read, understand, and interpret technical material with embedded charts and diagrams 
(e.g., property tax bills, stock market reports); they need to be able to speak clearly about mathematical ideas (e.g., as a 
salesman explaining the interest and payoff on an insurance policy); and they need extensive experience writing reports 
based on mathematical and technical analysis (e.g., a recommendation to a supervisor summarizing the conclusion of a 
study). 

            Functional mathematics channels the much-criticized "mile-wide, inch-deep" curricular river into a narrower but 
deeper stream of ideas and procedures that reinforce each other as students progress through school and college and on 
into careers. It provides a rich foundation of experience and examples on which students can build subsequent 
abstractions and generalizations. Indeed, to fulfill its goals, a functional curriculum must leave students well-prepared 
not only for work but also for subsequent courses in more abstract mathematics. 

 
 

 
You are helping your brother-in-law build a garage on  
gently sloped land next to his house. After leveling the  
land, you begin staking out the foundation. To check  
that corners are square, you measure the diagonals  
and discover that they differ by 3 inches. Is that  
because the corners may not be perfectly level, or  
because they are not perfectly square? How can you  
determine what needs fixing to make sure that you  
start with a foundation that is both level and square?  

 

Functional Curricula 
            The elements of functional mathematics can be embedded in many different curricula--the paths students follow 
through their education. Although some parts of mathematics impose a necessary order on the curriculum (e.g., 
arithmetic before algebra; linear equations before quadratic), large parts of mathematics can be approached from many 
different directions. Data analysis can be either a motivation for or an application of graphing and algebra, geometry 
can either precede or follow algebra; and each can reinforce the other. The order in which elements are listed bears no 
relationship to the order in which they may be taught through a three-year core curriculum. 

            The elements of functional mathematics arise from common contexts of life and work--measuring objects, 
managing money, scheduling time, making choices, and projecting trends. Although it is possible to organize a 
curriculum around such contexts, without a list of elements such as those in Appendix B to guide instruction, the 



mathematics itself may remain largely hidden. Alternatively, a functional curriculum can be organized around 
mathematical themes such as the sections of Appendix B. Indeed, the latter fits better the experience of most 
mathematics teachers and is more likely to be adaptable to most school settings. 

            Any mathematics curriculum designed on functional grounds--whether organized around external contexts or 
mathematical themes--will emphasize authentic applications from everyday life and work. In such a curriculum, 
students will gain considerable experience with mathematical tasks that are concrete yet sophisticated, conceptually 
simple yet cognitively complex (Forman & Steen, 1995). A functional curriculum compels a better balance of statistics 
(numbers), geometry (space), and algebra (symbols)--the three major branches of the mathematical sciences. By 
highlighting the rich mathematics embedded in everyday tasks, this approach (in contrast to traditional "vocational 
math") can dispel both minimalist views about the mathematics required for work and elitist views of academic 
mathematics as an area with little to learn from work-based problems (Bailey & Merritt, 1997; Forman & Steen, 1998).  

            Because of the history of low standards in traditional vocational programs, many teachers and parents believe 
that a work-focused curriculum will necessarily lack the rigor of a precollege academic track. Contrary to this belief, 
the "zero-defect" demands of the high-performance workplace for exacting standards and precise tolerances actually 
impose a much higher standard of rigor than do academic programs that award students a B for work that is only 80-
85% accurate. Moreover, the lengthy and subtle reasoning required to resolve many problems that arise in real contexts 
provides students with experience in critical thinking that is often lacking in academic courses that rush from topic to 
topic in order to cover a set curriculum. 

 
 

 
Five friends meet for dinner in a restaurant. Some have  
drinks and others do not; some have dessert and  
others do not; some order inexpensive entrees, others  
choose fancier options. When the bill comes they need  
to decide whether to just add a tip and split it five  
ways, or whether some perhaps should pay more than  
others. What is the quickest way to decide how much  
each should pay?  

 

Teaching Functional Mathematics 
            Although the public thinks of standards primarily in terms of performance expectations for students, both the 
mathematics standards  
(NCTM, 1989) and the science standards (National Research Council, 1996) place equal emphasis on expectations for 
teaching, specifically that it be active, student-centered, and contextual: 

• Active instructionencourages students to explore a variety of strategies; to make hands-on use of concrete 
materials; to identify missing information needed to solve problems; and to investigate available data. 



• Student-centered instructionfocuses on problems that students see as relevant and interesting; that help students 
learn to work with others; and that strengthen students' technical communication skills. 

• Contextual instructionasks students to engage problems first in context, then with mathematical formality; 
suggests resources that might provide additional information; requires that students verify the reasonableness of 
solutions in the context of the original problem; and encourages students to see connections of mathematics to 
work and life.  

            These expectations for effective teaching are implicitly reinforced in recently published occupational skill 
standards (National Skill Standards Board, 1998) that outline what entry-level employees are expected to know and be 
able to do in a variety of trades. Although these standards frequently display performance expectations for basic 
mathematics as lists of topics, the examples they provide of what workers need to be able to do are always situated in 
specific contexts and most often require action outcomes (Forman & Steen, in press). 

            Most students learn mathematics by solving problems. In traditional mathematics courses, exercises came in two 
flavors: explicit mathematical tasks (e.g., solve, find, calculate) and dreaded "word problems" in which the mathematics 
is hidden as if in a secret code. Indeed, many students, abetted by their teachers, learn to unlock the secret code by 
searching for key words (e.g., lessfor minus, totalfor plus) rather than by thinking about the meaning of the problem 
(which may be a good thing, because so many traditional word problems defy common sense). 

            In a curriculum focused on functional mathematics, tasks are more likely to resemble those found in everyday 
life or in the workplace than those found in school textbooks. Students need to think about each problem afresh, without 
the clues provided by a specific textbook chapter. Rather than just being asked to solve an equation or calculate an 
answer, students are asked to design, plan, evaluate, recommend, review, define, critique, and explain--all things they 
will need to do in their future jobs (as well as in college courses). In the process, they will formulate conjectures, model 
processes, transform data, draw conclusions, check results, and evaluate findings. The challenges students face in a 
functional curriculum are often nonroutine and open-ended, with solutions taking from minutes to days, and requiring 
diverse forms of presentation (oral, written, video, or computer). As in real job situations, some work is done alone, and 
some in teams. 

 
 

 
A round chimney 8" in diameter protrudes from a roof  
that has a pitch of 3:1. Draw a pattern for an aluminum  
skirt that can be cut out of sheet metal and bent into  
a cone to seal the chimney against rain.  

 

Mathematics In Context 
            Students' achievements in school mathematics depend not only on the content of the curriculum and the 
instructional strategies employed by the teacher but also on the context in which the mathematics is embedded. 
Traditionally, mathematics has served as its own context: as climbers scale mountains because they are there, so 
students are expected to solve equations simply because it is in the nature of equations to be solved. From this 



perspective, mathematics is considered separate from and prior to its applications. Once the mathematics is learned, it 
supposedly can then be applied to various problems, either artificial or real. 

            Many of the new curricula developed in response to the NCTM standards or state frameworks give increased 
priority to applications and mathematical models. In some of these programs, applications are at the center, providing a 
context for the mathematical tools prescribed by the standards. In others, applications serve more to motivate topics 
specified in the standards. In virtually all cases, the applications found in current curricula are selected, invented, or 
simplified to serve the purpose of teaching particular mathematical skills or concepts. In contrast, the mathematical 
topics in a functional curriculum are determined by the importance of the contexts in which they arise. 

            For most students, interesting contexts make rigorous learning possible. Realistic problems harbor hidden 
mathematics that good teachers can illuminate with probing questions. Most authentic mathematical problems require 
multistep procedures and employ realistic data --which are often incomplete or inconsistent. Problems emerging from 
authentic contexts stimulate complex thinking, expand students' understanding, and reveal the interconnected logic that 
unites mathematics.  

 
 

 
Devise criteria and procedures for fair addition of a  
congressional district to a state in a way that will  
minimize disruption of current districts while creating  
new districts that are relatively compact (non- 
gerrymandered) and of nearly equal size.  

 

Employing Computers 
            It has been clear for many years that technology has changed priorities for mathematics. Much of traditional 
mathematics (from long division to integration by parts) was created not to enhance understanding but to provide a 
means of calculating results. This mathematics is now embedded in silicon, so training people to implement these 
methods with facility and accuracy is no longer as important as it once was. At the same time, technology has increased 
significantly the importance of certain parts of mathematics (e.g., statistics, number theory, discrete mathematics) that 
are widely used in information-based industries. 

            Many mathematics teachers have embraced technology, not so much because it has changed mathematics but 
because it is a powerful pedagogical tool. Mathematics is the science of patterns (Devlin, 1994; Steen, 1988), and 
patterns are most easily explored using computers and calculators. Technology enables students to study patterns as 
they never could before, and in so doing, it offers mathematics what laboratories offer science: a source of evidence, 
ideas, and conjectures. 

            The capabilities of computers and graphing calculators to create visual displays of data have also fundamentally 
changed what it means to understand mathematics. In earlier times, mathematicians struggled to create formal symbolic 
systems to represent with rigor and precision informal visual images and hand-drawn sketches. However, today's 



computer graphics are so sophisticated that a great deal of mathematics can be carried out entirely in a graphical mode. 
In many ways, the medium of computers has become the message of mathematical practice. 

            Finally, and perhaps most significantly, computers and calculators increase dramatically the number of users of 
mathematics--many of whom are not well-educated in mathematics. Previously, only those who learned mathematics 
used it. Today, many people use mathematical tools for routine work with spreadsheets, calculators, and financial 
systems--tools that are built on mathematics they have never studied. For example, technicians who diagnose and repair 
electronic equipment employ a full range of elements of functional mathematics--from number systems to logical 
inferences, from statistical tests to graphical interpretations. Broad competence in the practice of technology-related 
mathematics can boost graduates up many different career ladders. 

            This poses a unique challenge for mathematics education: to provide large numbers of citizens with the ability 
to use mathematics-based tools intelligently without requiring that they prepare for mathematics-based careers. 
Although mathematicians take for granted that learning without understanding is ephemeral, many others argue that 
where technology is concerned, it is more important for students to learn how to use hardware and software effectively 
than to understand all the underlying mathematics. But even those who only use the products of mathematics recognize 
the value of understanding the underlying principles at a time when things go wrong or unexpected results appear. In a 
functional curriculum where, for example, algebra emerges from work with spreadsheets, the traditional distinction 
between understanding and competence becomes less sharp. 

 
 

 
-- How many school teachers are there in New York  
    City? How many electricians? How many  
    morticians?  
-- How many words are there in all the books in the  
    school library? How many megabytes of disk  
    storage would be required to store the entire library  
    on a computer?  

 

Avoiding Pitfalls 
            Those who develop materials and examples for a functional curriculum need to avoid some common pitfalls that 
plague all attempts at situating mathematics in authentic contexts. On the one hand, there is the temptation to give 
priority to the mathematics, either by selecting tasks to ensure coverage of mathematical topics without much regard to 
the tasks' intrinsic importance or by imposing unwarranted structure on a contextually rich problem in the interest of 
ensuring appropriate mathematical coverage. On the other hand, it is easy to overlook interesting mathematics hidden 
beneath the surface of many ordinary tasks or to choose problems that fail to help students prepare for advanced study 
in mathematics. Any curriculum that is to prepare students for subsequent mathematics-dependent courses must 
recognize the importance of intellectual growth and conceptual continuity in the sequencing of tasks in which 
mathematical activities are embedded. 



            Context-rich mathematics curricula often present tasks in the form of worksheets, outlining a series of short-
answer steps that lead to a solution. While ostensibly intended to help students organize their thinking and assist 
teachers in following students' work, these intellectual scaffolds strip tasks of everything that makes them problematic. 
Indeed, worksheets reveal a didactic posture of traditional teaching (teacher tells, students mimic) that undermines 
learning and limits understanding. Students will learn and retain much more from the chaotic process of exploring, 
defending, and arguing their own approaches.  

            Finally, although a functional mathematics curriculum is motivated largely by examples that seem to lie outside 
the world of mathematics, it is nonetheless very important for students' future study that instructors bring mathematical 
closure at appropriate points. Students need to recognize and reflect on what they have learned; to be clear about 
definitions, concepts, vocabulary, methods, and potential generalizations; and to have sufficient opportunity to reflect 
on the accomplishments and limitations of mathematics as a tool in helping solve authentic problems. 

 
 

 
A patient with an aggressive cancer faces two options  
for treatment: With Option A, he has a 40% chance of  
surviving for a year, but if he makes it that long then  
his chance of surviving a second year is two out of  
three. With Option B, he has a 50-50 chance of  
surviving each of the first and second years. Survival  
rates beyond the second year are similar for each  
option. Which choice should he make?  

 

Mathematics in Life and Work 
            The diverse contexts of daily life and work provide many realistic views of functional mathematics--of the 
mathematical practice underlying routine events of daily life. These contexts offer episodic views, incomplete in scope 
and less systematic than a list of elements, but more suggestive of the way functional mathematics may be introduced in 
courses. 

 

            Reading Maps. Road maps of cities and states provide crucial information about routes and locations. For those 
who know how to "read" them, maps also convey scale and direction, helping drivers know which way to turn at 
intersections, permitting quick estimates of driving time, and revealing compass directions that relate to highway signs 
at road intersections. Map scales are just ratios--an essential part of school mathematics. Different scales not only 
convey different detail, but also require different translations to represent distance. 

            Reading maps is not just a matter of thinking of distances in different scales. In many cases, the geometry of 
maps represents other features such as temperature or soil content. Most common are weather maps with color-coded 
regions showing gradations in recorded or predicted temperatures. Similar maps sometimes display recorded or 



predicted precipitation, barometric pressure, vegetation features, or soil chemistry. Like topographic maps used by 
hikers, these maps represent some feature of the landscape that changes from place to place. The spacing between 
regions of similar temperature (or pressure, or elevation) conveys the steepness (or gradient) of change--what 
mathematicians call the "slope" of a line. 

            Scale-drawings and blueprints are also widely used to illustrate details of homes, apartments, and office 
buildings. These drawings represent sizes of rooms, locations of windows and doors, and--if the scale permits--
locations of electrical outlets and plumbing fixtures. Architects' rulers with different units representing one foot of real 
space make it possible to read real distances off scale drawings, taking advantage of the geometrical properties of 
similar figures. New geographic information systems (GIS) encode spatially oriented data in a form suitable for 
computer spreadsheets, thereby enabling other factors (e.g., costs, environmental factors) to be logically linked to the 
geometric structure of a map. 

 

            Ensuring Quality. Statistical process control (SPC) and statistical quality control (SQC) are crucial components 
of high-performance manufacturing, where "zero defect" is the goal. Instead of checking and repairing products after 
manufacture, firms like Boeing, General Motors, Kodak, Motorola, and Siemens now insist that at every step in the 
manufacturing process, materials, parts, and final products be manufactured within tight tolerances. Moreover, workers 
on assembly lines are responsible for ensuring this consistent level of quality. 

            The two tools that make this possible are based on statistics--the science of collecting and organizing data. The 
first, statistical process control, occurs during manufacture: assembly line workers chart key indicators of the process--
perhaps the temperature of a mixture or the pitch of a grinding tool--on graph paper marked with curves representing 
the limits determined by the required (or contracted) tolerances. If the process strays outside these limits, or approaches 
them too often, workers may decide to shut down the assembly line to make adjustments in the manufacturing process 
rather than risk producing products that do not meet design specifications. 

            Statistical quality control is like statistical process control, but takes place when components (e.g., computer 
chips) are completed. By sampling finished products and charting their performance characteristics, workers can 
identify potential problems before products exceed permitted tolerances--and then take action to prevent the shipping or 
further manufacture of defective (i.e., out-of-tolerance) products. 

 

            Using Spreadsheets. Almost everyone who works with a computer uses a word processor for writing, whether 
for correspondence or business reports. Almost as popular are "number processors," commonly known as spreadsheets. 
Originally designed as a tool for accountants, spreadsheets are ubiquitous both in the office and at home--wherever 
anyone deals with budgets and expenses, taxes and investments. Spreadsheets are used to record business inventories 
and scientific data, to keep track of medical records and student grades, to organize crop records and airline schedules. 
Virtually any systematic information can be made more useful by being put in a properly organized spreadsheet. 

            To a mathematician, a spreadsheet is just algebra playing on a popular stage. The basic operations of a 
spreadsheet--adding cells together, calculating percentages, projecting growth rates, determining present values--are 
entered as formulas into the appropriate cells. More complex formulas (e.g., exponential, financial, trigonometric) are 
available from a pull-down menu. Once the computations are completed, the results can be displayed in graphs of 



various sorts (lines, bars, pies), often in vivid color. 

            Figuring out how to translate a task into a spreadsheet design is just like setting up a word problem in algebra: it 
involves identifying important variables and the relations among them. Preparing a spreadsheet requires equations 
which are suitably located in the cells. The spreadsheet does the arithmetic, and the designer does the algebra. Then, as 
in any mathematical exercise, the designer needs to check the results--typically by specifying independent computations 
to confirm key spots in the spreadsheet. (For example, adding all the entries in a grid can confirm the accuracy of the 
sum of the row totals, thus catching possible errors in the spreadsheet formulas.) Variables, equations, graphs, word 
problems--the ingredients of a good algebra course--are just the ticket for mastering spreadsheets. 

 

            Building Things. One in every four American workers builds things--automobiles or airplanes, bicycles or 
buildings, containers or chips. These products are three-dimensional, created by casting and cutting, by folding and 
fastening, by molding and machining. Designing things to be built (the work of engineers and architects) and building 
objects as designed (the work of carpenters and machinists) require impressive feats of indirect measurement, three-
dimensional geometry, and visual imagination. 

            In a typical aluminum airplane part, for example, some measurements are specified by the designers, while 
others must be calculated in order to program the cutting tool that will actually create the part. In three dimensions, 
things are even more complicated. Planning how to drill holes at specified angles in a block of aluminum whose base is 
not square and whose sides are tilted in odd directions would tax the skills of most mathematics teachers. But 
machinists are expected to perform these calculations routinely to determine settings on a "sine plate," a device whose 
surface can tilt in two different dimensions in order to compensate for odd angles on the part that is to be drilled. 

            Both designers and builders now use computer-assisted design (CAD) and computer-assisted manufacturing 
(CAM) to ensure the exacting tolerances required for high-performance manufacturing. To use these tools effectively, 
workers need to have mastered the basic skills of drawing geometric objects, measuring distances, and calculating 
angles, distances, areas, and volumes. The basic principles of geometry in three dimensions are the same as those in two 
dimensions, but the experience of working in three dimensions is startlingly more sophisticated. A good command of 
geometry and trigonometry is essential for anyone building things in today's manufacturing industries. 

 

            Thinking Systemically. Systems surround us--in commerce, science, technology, and society. In complex 
systems, many factors influence performance, thus making the task of solving problems inherently multidimensional. 
Indeed, the interaction of different factors is often difficult to predict, sometimes even counterintuitive. Complex 
systems defy simplistic single answers. Thus, the first step in mathematical analysis is often to prepare an inventory of 
all possible factors that might need to be considered. 

            For example, the rise of efficient package delivery services and instantaneous computer communication have 
enabled many manufacturing companies to operate with minimum inventories, thus saving warehousing costs but 
risking a shutdown if any part of the network of suppliers fails. Understanding how a system of suppliers, 
communication, and transportation works requires analysis of capacity, redundancy, single-point failures, and time of 
delivery--all involving quantitative or logical analyses. 



            Other system problems arise within the everyday work of a typical small business. For example, the stockroom 
of a shoe store holds several thousand boxes labeled by manufacturer, style, color, and size and arranged on floor-to-
ceiling shelves. Deciding how to arrange these boxes can have a significant impact on the profit margin of the store. 
Obvious options are by manufacturer, by style, by size, by frequency of demand, or by date of arrival. Clerks need to be 
able to find and reshelve shoes quickly as they serve customers. But they also need to be able to make room easily for 
new styles when they arrive, to compare regularly the stockroom inventory with sales and receipt of new shoes, and to 
locate misshelved shoes. Mathematical thinking helps greatly in exploring the advantages and disadvantages of the 
many possible systems for arranging the stockroom.  

 

            Making Choices. Life is full of choices--to rent an apartment or purchase a home; to lease or buy a car; to pay 
off credit card debt or use the money instead to increase the down payment on a house. All such choices involve 
mathematical calculations to compare costs and evaluate risks. For example: 

The rent on your present apartment is $1,200 per month and is likely to increase 5% each year. You have enough saved 
to put a 25% down payment on a $180,000 townhouse with 50% more space, but those funds are invested in an 
aggressive mutual fund that has averaged 22% return for the last several years, most of which has been in long-term 
capital gains (which now have a lower tax rate). Current rates for a 30-year mortgage with 20% down are about 6.75%, 
with 2 points charged up front; with a 10% down payment the rate increases to 7.00%. The interest on a mortgage is tax 
deductible on both state and federal returns; in your income bracket, that will provide a 36% tax savings. You expect to 
stay at your current job for at least 5-7 years, but then may want to leave the area. What should you do?  

            This sounds like a problem for a financial planner, and many people make a good living advising people about 
just such decisions. But anyone who has learned high school mathematics and who knows how to program a 
spreadsheet can easily work out the financial implications of this situation. Moreover, by doing it on a spreadsheet, it is 
quite easy to examine "what if" scenarios: What if the interest rate goes up to 7% or 7.25%? What if the stock market 
goes down to its traditional 10-12% rate of return? What if a job change forces a move after three years? 

            In contrast to many problems of school mathematics which are routine for anyone who knows the right 
definitions (e.g., what is cos ([pi]/2)?) but mystifying otherwise, this common financial dilemma is mathematically 
simple (it involves only arithmetic and percentages) but logically and conceptually complex. There are many variables, 
some of which need to be estimated; there are many relationships that interact with each other (e.g., interest rates and 
tax deductions); and the financial picture changes each year (actually, each month) as payments are made.  

            The complex sequence of reasoning involved in this analysis is typical of mathematics, which depends on 
carefully crafted chains of inferences to justify conclusions based on given premises. Students who can confidently 
reason their way through a lengthy proof or calculation should have no problem being their own financial advisors. And 
students who learn to deal with long chains of reasoning inherent in realistic dilemmas will be well prepared to use that 
same logic and careful reasoning if they pursue the study of mathematics in college. 

 
 

 
In preparing fertilizer for a garden, a homeowner poured  
one quart of concentrated liquid fertilizer into a two- 



gallon can and filled the can with water. Then she  
discovered that the proper ratio of fertilizer to water  
should be 1:3. How much more liquid fertilizer should  
she add to the current mixture to obtain the desired  
concentration?  

 

Making Mathematics Meaningful 
            Those who discuss mathematics education frequently describe mathematical knowledge in broad categories 
such as skills and understanding, concepts and facts, procedures and practices, or insights and knowledge. Whole 
volumes of educational research are devoted to distinguishing among these different aspects of mathematical 
knowledge. The standards movement has tended to subsume all these distinctions into two categories of knowledge and 
performance: what students should know and what students shoud be able to do (Ravitch, 1995; Tucker & Codding, 
1998). 

            The two broad cultures of mathematics education argue with each other largely because they differ in the 
interpretations they give to these different aspects of mathematical knowledge. Those who favor the traditional 
curriculum centered on algebra, functions, and Euclidean geometry argue that mastery of facts and basic skills are a 
prerequisite to understanding and performance. Reformers who favor a broader curriculum take a more constructivist 
view--that understanding and mastery are an outgrowth of active engagement with contextualized mathematics. 
Regardless of approach or emphasis, both traditional and reform curricula generally cover a similar set of topics 
designed to move students along the path from arithmetic to calculus. 

            Functional mathematics follows much the same path, with variations that reflect its grounding in authentic 
problems. However, by embedding mathematics in practice, functional mathematics can offer students both theory and 
know-how. Although in some technical areas, practical "of-the-moment" learning offers little that outlasts the next 
generation of gadgets, the logical structure that unites mathematics guarantees that all understanding, no matter how 
specific, has the potential to enhance mastery of other areas. What matters for long-term mastery of mathematics is not 
so much which particular skills are learned as that the process of learning be, in Shulman's words, "meaningful, 
memorable, and internalizable." Although topics in functional mathematics may be chosen for proximate utility, their 
study can provide insight and understandings sufficient for lifelong learning. 

            A curriculum based on functional mathematics requires appropriate content, authentic contexts, engaging tasks, 
and active instruction. By featuring mathematics in common contexts, a functional curriculum can motivate students to 
link meaning with mathematics. The best problem settings offer opportunities for exploration from multiple 
perspectives, including graphical, numerical, symbolic, verbal, and computational. Technology--from graphing 
calculators and word processors to spreadsheets and symbolic algebra systems--can enhance understanding from each 
of these perspectives. Effective contexts provide opportunities for horizontal linkages among diverse areas of life and 
work as well as vertical integration from elementary ideas to advanced topics. Experience with rich contexts helps 
students recognize that asking questions is often as important as finding answers. Such contexts invite variations that 
can stimulate mathematical habits of mind and propel students to deep understanding. 
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Appendix A:  
Excerpts From Different Standards 

            The diverse ways that different organizations express expectations for mathematics illustrate a variety of 
approaches to setting standards. The excerpts that follow illustrate this variety in the particular case of algebra, the 
core of high school mathematics. 

From the National Council of Teachers of Mathematics (1989):  
            In grades 9-12, the mathematics curriculum should include the continued study of algebraic concepts and 
methods so that all students can  

• represent situations that involve variable quantities with expressions, equations, inequalities, and matrices;  
• use tables and graphs as tools to interpret expressions, equations, and inequalities;  
• operate on expressions and matrices, and solve equations and inequalities;  
• appreciate the power of mathematical abstraction and symbolism;  
• and so that, in addition, college-intending students can  
• use matrices to solve linear systems;  
• demonstrate technical facility with algebraic transformations, including techniques based on the theory of 

equations.  

From the California Academic Standards Commission (1997):  
By the end of Grade 10, all students should be able to:  

• Solve linear equations and inequalities with rational coefficients; use the slope-intercept equation of a line (y = 
mx + b) to model a linear situation and represent the problem in terms of a graph.  



• Describe, graph, and solve problems using linear, quadratic, power, exponential, absolute value, polynomial, 
and rational functions; identify key characteristics of functions (domain, range, intercepts, asymptotes).  

• Derive and use the quadratic formula to solve any quadratic equation with real coefficients; graph equations of 
the conic sections (parabola, ellipse, circle, hyperbola), identifying key features such as intercepts and axes.  

• Describe, extend, and find the nth term of arithmetic, geometric, and other regular series.  

And in Grades 11-12, mathematics students should learn about:  

• Piece-wise defined functions; logarithm function and as inverse of exponential; polar coordinates; parametric 
equations; recursive formulas, binomial theorem, mathematical induction; trigonometric functions, graphs, 
identities, key values, and applications; vector decomposition.  

From the American Mathematical Association of Two-Year Colleges (1995):  
            The study of algebra must focus on modeling real phenomena via mathematical relationships. Students should 
explore the relationship between abstract variables and concrete applications and develop an intuitive sense of 
mathematical functions. Within this context, students should develop an understanding of the abstract versions of basic 
number properties and learn how to apply these properties. Students should develop reasonable facility in simplifying 
the most common and useful types of algebraic expressions, recognizing equivalent expressions and equations, and 
understanding and applying principles for solving simple equations.  
            Rote algebraic manipulations and step-by-step algorithms, which have received central attention in traditional 
algebra courses, are not the main focus. Topics such as specialized factoring techniques and complicated operations 
with rational and radical expressions should be eliminated. The inclusion of such topics has been justified on the basis 
that they would be needed later in calculus. This argument lacks validity in view of the reforms taking place in calculus 
and the mathematics being used in the workplace. 

From the Secretary's Commission on Achieving Necessary Skills (1991):  
            Mathematics. Approaches practical problems by choosing appropriately from a variety of mathematical 
techniques; uses quantitative data to construct logical explanations for real world situations; expresses mathematical 
ideas and concepts orally and in writing; and understands the role of chance in the occurrence and prediction of events.  
            Reasoning. Discovers a rule or principle underlying the relationship between two or more objects and applies it 
in solving a problem. For example, uses logic to draw conclusions from available information, extracts rules or 
principles from a set of objects or written text, applies rules and principles to a new situation, or determines which 
conclusions are correct when given a set of facts and a set of conclusions. 

 
 

Appendix B:  
Elements Of Functional Mathematics 

            These elements outline aspects of mathematics that are important for all students in their life and work. They 
emphasize concrete, realistic topics that arise in common situations in news, sports, finance, work, and leisure. These 
elements can be taught through many different curricula ranging from traditional to reform, from academic to 
vocational. Students completing any curriculum that includes these elements would be well-prepared to enter a wide 



variety of technical and academic programs, including a one-year precalculus course. 

Numbers and Data 

            Mental Estimation.Anticipate total costs, distances, times; estimate unknown quantities (e.g., number of high 
school students in a state or city) using proportional reasoning; order of magnitude estimates; mental checking of 
calculator and computer results. 

            Numbers.Examples of whole numbers (integers), fractions (rational numbers), and irrational numbers ( ). 
Number line; mixed numbers; decimals, percentages, scientific notation. Prime numbers, factors; simple number 
theory; binary numbers and simple binary arithmetic; units and magnitudes; extreme numbers (e.g., national debt, 
astronomical distances); number sense; scientific notation. 

            Calculation.Accurate paper-and-pencil methods for simple arithmetic and percentage calculations; calculator 
use for complex calculations; spreadsheet methods for problems with a lot of data. Strategies for checking 
reasonableness and accuracy. Significant digits; interval arithmetic; errors; tolerances. Mixed methods (mental, pencil, 
calculator). 

            Coding.Number systems (decimal, binary, octal, hex); ASCII code; check digits. Patterns and criteria for credit 
card, Social Security, telephone, license plate numbers. 

            Index Numbers.Examples in the news: stock market averages; consumer price index; unemployment rate; SAT 
scores. Definitions and deficiencies; uses and abuses. 

            Information Systems.Collecting and organizing data; geographic information systems (GIS) and management 
information systems (MIS); visual representation of data. 

Measurement and Space 

            Measurement.Direct and indirect means; estimation; use of appropriate instruments (rulers, tapes, micrometers, 
pacing, electronic gauges); plumb lines and square corners; calculated measurements; accuracy; tolerances; detecting 
and correcting misalignments. 

            Measurement Geometry.Measurement formulas for simple plane figures: triangles, circles, quadrilaterals. 
Calculation of area, angles, lengths by indirect means. Right triangle trigonometry; applications of Pythagorean 
theorem. 

            Dimensions.Linear, square, and cubic growth of length, area, volume. Coordinate notation; dimension as factor 
in multivariable phenomena. 

            Geometric Relations.Proof of Pythagorean theorem and of other basic theorems. Construction of line and angle 
bisectors, finding center of circular arc.  

            Spatial Geometry.Shapes in space; volumes of cylinders and spheres; calculation of angles in three-dimensions 
(e.g., meeting of roof trusses). Interpreting construction diagrams; nominal vs. true dimensions (e.g., of 2 x 4s); 
tolerances and perturbations in constructing three-dimensional objects. 



            Global Positioning:Map projections, latitude and longitude, global positioning systems (GPS); local, regional, 
and global coordinate systems. 

Growth and Variation 

            Linear Change.Situations in which the rate of change is constant (e.g., uniform motion); contrast with examples 
where change is nonlinear (e.g., distance vs. time for falling body). Slope as rate of change; slope-intercept equation, 
with graphical significance of parameters. Difference between rate of change and value of the dependent variable. 

            Proportion.Situations modeled by similarity and ratio (e.g., height and shadows, construction cost vs. square 
footage, drug dose vs. body weight); examples where change is disproportional (e.g., height vs. weight). Calculating 
missing terms. Mental estimation using proportions. 

            Exponential Growth.Situations such as population growth, radioactivity, and compound interest, where the rate 
of change is proportional to size; doubling time and half-life as characteristics of exponential phenomena; symbolic 
representation (2 n, 10 n); ordinary and log-scaled graphs. 

            Normal Curve.Situations such as distribution of heights, of repeated measurements, and of manufactured goods 
in which phenomena distribute in a bell-shaped curve. Examples of situations in which they do not (e.g., income, 
grades, typographical errors, life spans). Parameters and percentages of normal distribution; z-scores, meaning of 1-, 2-, 
and 3-s. Area as measure of probability. 

            Parabolic Patterns.Falling bodies; parabolas; quadratic equations; optimization problems. 

            Cyclic Functions.Situations such as time of sunrise, sound waves, and biological rhythms that exhibit cyclic 
behavior. Graphs of sin and cos; relations among graphs; sin2u + cos2u = 1. 

Chance and Probability 

            Elementary Data Analysis.Measures of central tendency (average, median, mode) and of spread (range, standard 
deviation, midrange); visual displays of data (pie charts, scatter plots, bar graphs, box and whisker charts). 
Distributions. Quality control charts. Recognizing and dealing with outliers. "Data = Pattern + Noise." 

            Probability.Chance and randomness; calculating odds in common situations (dice, coin tosses, lotteries); 
expected value. Binomial probability, random numbers, hot streaks, binomial approximation of normal distribution; 
computer simulations; estimating area by Monte Carlo methods. Two-way tables; bias paradoxes. 

            Risk Analysis.Common examples of risks (e.g., accidents, diseases, causes of death, lotteries). Ways of 
estimating risk. Confounding factors. Communicating and interpreting risk. 

Reasoning and Inference 

            Statistical Inference.Rationale for random samples; double-blind experiments; surveys and polls; confidence 
intervals. Causality vs. correlation. Multiple factors; interaction effects; hidden factors. Judging validity of statistical 
claims in media reports. Making decisions based on data (e.g., research methods, medical procedures). 



            Scientific Inference.Gathering data; detecting patterns; making conjectures; testing conjectures; drawing 
inferences. 

            Mathematical Inference.Logical reasoning and deduction; assumptions and conclusions; axiomatic systems; 
theorems and proofs; proof by direct deduction, by indirect argument, and by "mathematical induction." 

            Verification.Levels of convincing argument; persuasion and counterexamples; logical deduction; legal reasoning 
("beyond reasonable doubt" vs. "preponderance of evidence"; court decisions interpreting various logical options); 
informal inference (suspicion, experience, likelihood); classical proofs (e.g., isosceles triangle, infinitude of primes). 

Variables and Equations 

            Algebra.Variables, constants, symbols, parameters; equations vs. expressions. Direct and indirect variation; 
inverse relations; patterns of change; rates of change. Graphical representations; translation between words and graphs. 
Symbols and functions. 

            Equations.Linear and quadratic; absolute value; 2 x 2 systems of linear equations; inequalities; related graphs. 

            Graphs.Interpretation of graphs; sketching graphs based on relations of variables; connection between graphs 
and function parameters.  

            Algorithms.Alternative arithmetic algorithms; flowcharts; loops; constructing algorithms; maximum time vs. 
average time comparisons. 

Modeling and Decisions 

            Financial Mathematics.Percentages, markups, discounts; simple and compound interest; taxes; investment 
instruments (stocks, mortgages, bonds); loans, annuities, insurance, personal finance. 

            Planning.Allocating resources; management information systems; preparing budgets; determining fair division; 
negotiating differences; scheduling processes, decision trees; PERT charts; systems thinking. 

            Mathematical Modeling.Abstracting mathematical structures from real-world situations; reasoning within 
mathematical models; reinterpreting results in terms of original situations; testing interpretations for suitability and 
accuracy; revision of mathematical structure; repetition of modeling cycle. 

            Scientific Modeling.Role of mathematics in modeling aspects of science such as acceleration, astronomical 
geometry, electrical current, genetic coding, harmonic motion, heredity, stoichiometry. 

            Technological Tools.Familiarity with standard calculator and computer tools: scientific and graphing calculators 
(including solving equations via graphs); spreadsheets (including presentation of data via charts); statistical packages 
(including graphical displays of data). 
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